Gentee overview
Introduction

The Gentee programming language can be classified as a procedure-oriented language with some features
typical of object-oriented programming. It has no complicated constructions and is easy to use, but at the
same time it is a powerful tool for solving all kinds of tasks. The syntax of the language is based on the

syntax of the C programming language and it has a lot in common with other C-like languages C++, Java,

C#. Gentee has the same numeric types int, uint, byte, ubyte, long, double, float, ... and can perform the

same operations with them +, ==, <, >, - [, +=, ++, -- [=,... as in other similar programming languages.

When you write programs, you can use all basic constructions that you come across in other languages. For

instance, such as while, if, for, with, foreach, switch, include .

The compilation unit in Gentee is a declaration command. Below you can see the sample declarations of
global variables and macros.

global
{
uint i my = OxFF
str name = "Alexey"
arrstr colour = %{"red", "green", "blue" }
}
define
{
PATH = $"c:\temp\docs"

FLAG

0x0001
}

While it is enough to specify the name and parameters (in case of a function) in order to access a variable
or call a function, you hawe to add '$' to the left in order to substitute a macro. The values of macros are
substituted during compilation.

i = my | S$FLAG
Types

Besides basic numeric and built-in types buf, str, collection, it is possible to declare your own types using
the type command.

type mytype a
{
uint 1id
str name

}

Variables of any type do not require additional initialization after their declaration, you can access them at
once. Type fields are accessed with the help of the '." operation. Types can be inherited (the same as in
object-oriented languages) and the polymorphism of operations is provided for. If there is no method or
function for some variable of a certain type, similar methods for its parent types will be searched for. It is
possible to define and use operations used for numeric types (=, +=, ==, I=) and the foreach loop for any
types.

type mytype b<inherit = mytype a> : double d

operator mytype b =(mytype b left, mytype a right)
{
left.id = right.id
left.name = right.name
return left
}
Functions

Page 1

Gentee has three kinds of commands for determining the executable code: func, method, operator. The
program is executed starting from the function that has the main attribute.

func - A regular function responsible for performing operations specified in it.

func hello< main >

{
print ("Hello, World!")
getch ()

}

method - A function linked to a certain type. Calling a method is similar to taking a field of a type and is
performed with '." with the name and parameters of the method following it.

method uint str.islastchar(uint ch)

{

return this[*this - 1] == ch

func myfunc
{

str my = "String"

print (my.islastchar('g'))
}

operator - This command allows you to define assignment, comparison, arithmetical and other operators and
use them later for any types.

operator str +=(str left, uint 1)

{

return left += str(1)

func myfunc : print("Value = " += 100)

Gentee is a strongly-typed language. It imposes certain limitations on programming, but it considerably
reduces the possibility of mistakes on the other hand. Seweral functions and methods with the same names
can exist, but they must have at least one different parameter or a different number of parameters.

Strings

Gentee has wide capabilities regarding working with strings. Strings are defined with the help of double
quotation marks and have the control character '\'. If a string begins with '$', it will not take the control
character into account. Besides inserting special characters, the control character allows you to insert data
from files, calculate and insert expressions inside a string and also insert macros.

print ("Name = \(name += " gentee") Path = \$PATH\n")

It is often necessary to output some large amounts of text and part of this text is to be generated
dynamically. It is convenient to use text functions in this case. They can output data to the string you
specified while calling them or to the console.

text mytext (uint x)
Some text
x = \(x)
x * x = \(x*x)
\{ uint 1
fornum i, 5

{
@"x * N (1) = \N(x * i)\1"

Page 2

}

Some text

\!

Importing functions and using Gentee in other applications

From the very beginning Gentee has been deweloped in such a way that it would be possible to import
functions from DLL (or similar modules in other operating systems) on the one hand and that it would be
possible to use the Gentee compiler from programs written in other programming languages on the other
hand.

If you need to import functions from a DLL, just specify the name of the DLL file and declare the imported
functions.

import "kernel32.dl1" {
uint CloseHandle (uint)
ExitProcess (uint)
uint GetModuleFileNameA(uint, uint, uint) ->
GetModuleFileName
}

If you want to compile files in the Gentee language and execute them from your application, just take the file
gentee.dll and call the necessary interface functions. You can use the module gentee.dll free of charge, but
you must comply with the license agreement.

Conclusion

Here are a few words about how the compiler works. The source code of the compiler in the C programming
language is publicly available since Gentee is an open source project. The compilation rate is very high. As a
result of compiling a program, you get a byte code that can be sawed to a file or executed at once. It is
possible to run the saved byte code without the second compilation or use it as a library module in other
programs. Note that there is a set of ready libraries available and it is being constantly updated, which helps
to create programs of any complexity. Besides, it is possible to create executable (exe) files.

We have described only the main things typical of the Gentee programming language. You can always find
additional information on this site and discuss any questions with the developers and other users of Gentee.

Page 3

How Gentee was created
Alexey Krivonogov

The idea of creating my ow n programming language occurred to me at the end of the 1990's. | w as w orking on installation

softw are at the time, and | realized that | needed a simple scripting language that w ould make programming easier and more
comfortable. | started experimenting by creating simple languages, and by 2002 | felt that my w ork had yielded some real results.
My brother joined me in this w ork, and w e created the test version of the language soon after. It w asn't really the prototype of
Gentee, but it gave us an idea of w hat our future language ought to be like, and in the process w e gained invaluable experience.

In 2003 | stopped w orking on other projects and seriously got dow n to developing Gentee. Neither my brother nor | could devote all
our time to Gentee, so development took more than a year. Our most difficult task w as deciding on the syntax and features of the
language. We developed Gentee as a procedure-based programming language. We refused to use objects and classes in their
usual sense (although it should be mentioned that the language has both type inheritance and polymorphism now). We based the
language on C-like syntax because this has stood the test of time, and has achieved an iconic status. We w anted to make a
compact and fast compiler. And w e w anted to make it possible to use Gentee from other applications via a small DLL file, sow e
w ere careful not to overload the language.

We can't say that everything w ent smoothly. Some problems took us several days to solve. Some of our solutions didn't w ork, and
w e had to do some things all over again. We even had to disallow some other features. And so Gentee became the language w e
w anted it to be - a personal and subjective language for sure!

The first public version of the compiler w as published on the Internet on November 1, 2004. This date can be considered the
birthday of the language. After that w e regularly released versions with new features - w e even released a version for Linux. In
June 2006 w e made Gentee an open source project. Although the compiler had been free from the very beginning, w e decided
not to publish the source code w e had at that time, but instead to rew rite everything from scratch. The language had already
become stable by then, but w e w anted to complete some things and rew rite some others. It took more than a year for us to rew rite
the compiler because of interruptions by other jobs, but w e w ere determined and enthusiastic in our commitment to Gentee. You
could say that Gentee w as re-born in August / September, 2007.

Now that the source code of the compiler and libraries is open, w e look forw ard w ith excitement to seeing how Gentee develops
and improves through the efforts and expertise of its users.

Page 4

The Gentee Open Source License (MIT License)
Copyright (c) 2006-2009 The Gentee Group. All rights reserved.

1. Permission is hereby granted, free of charge, to any person obtaining a copy of this softw are and associated documentation
files (the "Softw are"), to deal in the Softw are w ithout restriction, including w ithout limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Softw are, and to permit persons to w hom the Softw are is furnished to do
so, subject to the follow ing conditions:

2. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Softw are.

3. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The Gentee Group can be contacted at info@gentee.com.

For more information on the Gentee Group and the Gentee Open Source project, please see w w w .gentee.com.

Page 5

mailto:info@gentee.com?subject=Gentee
http://www.gentee.com/

Language Syntax Reference

You have opened the manual on the syntax and semantics of the Gentee programming language. All syntactic language
constructions are described here. Programming opportunities offered by the language are also described here.

This manual is not a textbook on programming. It contains the description of the official version of the language from the developers
of the Gentee compiler.

Gentee is a procedural, high-level language. Its syntax has much in common w ith the syntax of C/C++. (This should help users
master many of Gentee's features quickly.) Like the Java or C# languages, a source program is compiled into object code, w hich
is then executed by a virtual machine.

Table of contents
Basic language elements
Identifiers
Numbers
Strings
Binary data
Macros
Collections
The program structure. Preprocessor
Comment. Character substitution

The define command

The ifdef command

Macro expressions

The include command

The import command

The public and private commands
Types and variables

The type command

Type inheritance
System type methods

The global command
Local variables

Functions methods operators
Function declaration: func

Method declaration: method
Redefining operator operations
Declaring text function

Properties
The extern command

Subfunction declaration: subfunc

Returning variables
Statements

if-elif-else statement

sw itch statement
w hile and do statements

for and fornum statements

foreach statement
return, break, continue instructions
label and goto instructions
w ith statement
Expressions and operators
Arithmetic operators
Logical operators
Assignment operators
Type reduction

Fields and pointers
Calling functions and methods

The conditional operator ?

Late binding operation

Table of operator precedence
Appendix

Page 6

. Gentee Language in BNF

Page 7

Identifiers

Identifiers are names that are used to refer to variables, types, functions, methods, etc. Identifiers can consist of alphanumeric
characters and the underscore character. A name may begin only w ith a letter or the underscore character. It is permissible to use
letters of the English alphabet as w ell as characters w hose code is betw een 0x80 and OxFF, but w e recommend that you use
only letters of the English alphabet to ensure that variable names are displayed correctly on other computers. The length of a name
is limited to 255 characters. Sample valid names: _my12, tem p, MainFunction. Names are case-sensitive: MyFunc and myfunc
are tw o different names.

The language has some reserved names that cannot be used as identifiers. These are called keyw ords, and they are used to
define constructions or objects in the language. The keywords are listed below :

as, break, case, continue, default, define, do, elif, else, extern, for, foreach, fornum, func, global, goto, if, ifdef,
import, include, label, method, of, operator, return, sizeof, subfunc, switch, text, this, type, while, with, inherit.

Page 8

Numbers

The Gentee language has several numeric types. There are several w ays to specify natural numbers or integers.

Decimal form
The most w idely used form.

Example: 65, -45367, 0

Hexadecimal form
Numbers must begin w ith 0X or 0x. Characters from A to F can be used in upper or low er case.

Example: 0xAA23, 0x1d2f, OXFFFFFF

Binary form
Numbers in binary form must begin w ith 0b or 0B and consist only of 0 or 1.

Example: 0b11001, 0B1010110110, 0b10101011000011

Character code
You can specify a specific character instead of the number corresponding to it, by enclosing the character in single quotation
marks.

Example: ‘A", '(, 'k, '2", '="
Gentee also has types called long and ulong. Each type occupies 8 bytes. To define such numbers, add L or | at the end.
Example: 231, 0xfaafd45fff6 7ffflL, -24363627252652L

Real numbers

There are tw o types of real numbers: double and float. A number w ith a decimal point or with a mantissa is of the double type.

To define a number of the float type, you should add F or f at the end. To specify a number of the double type w ithout a decimal
point and a mantissa, you should add D or d at the end.

Examples of double numbers: 123.122, -123.2a-2, 789D

Examples of float numbers: 12.75f, 0.55F, -78F

Page 9

Strings

Strings are define w ith a pair of double quotation marks in the language. If tw o stings come in a row, they will be combined into
one string. By default, constant strings cannot be specified in the Unicode encoding. Gentee has Unicode strings (ustr) and you
can use the UTF-8 encoding in constant strings for later conversion into Unicode. Simple string variables are defined w ith the str
type specified.

"It is a simple string
consisting of two lines."

There is a special character '\' that allow s you to perform various operations or substitutions. You can see the list of commands
w ith the special character below .

\\ The command character output.
"c:\\temp\\readme.txt"

\" A single quotation mark.

"This is \"Super Team\"!"

\n Line feed, code Ox0A.

\r Carriage return, code 0x0D.

\t Horizontal tabulation, code 0x09.

\I End-Of-Line - combination \r\n. It might be useful for output to a text file.

\0XX Combination of command character and zero follow ed by a number of character in hexadecimal notation makes any
character w ith code from 0 to 255 put in a string.

\#Remove the preceding carriage returns or spaces and tab characters. Only either carriage returns or spaces and tab characters
are removed depending on w hat precedes the special character. \ 0xd 0xalf a string just ends w ith the special character, the
carriage return characters that follow w ill be deleted. It is convenient to split a too long string this w ay.

"Line 1\r\nLine 2\1 Line \033 \
Line 3 too"
...\ Comments. You can insert any comments into the string.

\$macro$ In-line insertion of preprocessor macro. The last dollar sign '$' is optional if this sign is follow ed neither by letter nor
by digit.

"Name: \SNAME Company: \SCOMPANY *Users name and company*\"'

\(expression) Outputting a result of the expression. In parentheses there might be an expression of any type, w here string
conversion occurs.

\< filename > Content of the specified file is inserted. File name in the angle brackets must be specified as a macro string, i.e.
ignoring the command character.

"5 + 10 = \(5 + 10) Variable = \(var)\1 \<c:\temp\my.txt>"

\[idnam e]If you have a long string and w ant to disable the special character in some part of it, specify any combination of any
characters in square brackets. You do not even have to specify any additional character. To enable the special character later,
just specify the same combination in square brackets.

"\N[] \k\1\m [] \SNAMES \[.S] \o\p\r [.S] \SCOMPANY"

Note, there is also a macro string. Like the string, a macro string is enclosed in quotation marks; moreover, they are preceded by a
dollar sign '$'. Unlike the string, the macro string does not use a command character, but it replaces macros w hich appear in a
string. This type of a string is very appropriate for pointing file paths.

define {

mypath = $"c:\myfolder\subfolder"
myname = "application"

myext = "exe"

}

s = $"Smypath\Smyname$123. Smyext"
sl = "\Smypath\\\$myname$123.\Smyext"
// s = sl = c:\myfolder\subfolder\applicationl23.exe

Page 10

Binary data

Binary data is defined w ith a pair of single quotation marks. Numbers in the decimal and hexadecimal form and strings can be
elements of binary data. Numbers can be separated by spaces, commas, carriage returns and semicolons. The buf type
corresponds to binary data.

Combinations w ith the special '\' character are used to specify various elements.
*...\ Comments. You can insert any comments into the binary data.

\$macro$ Macro value is inserted into the binary data. If the last sign '$' is follow ed by neither a digit nor a letter, it is considered
to be optional.

\(expression) A result expression is inserted. An expression of any type enclosed in parentheses is to be converted into the
binary data.

\<filename > Contents of the required file is inserted. A file name enclosed w ithin angle brackets must be written as a macro
string, i.e. the command character is ignored.

\"nodiéa" The macro string is inserted into the binary data. It is important to note that the Null character is not appended to the
end of a string. The Null character is appended if the string is enclosed in parentheses \("string").

\h Insertion mode of numbers in hexadecimal notation. The numbers 2, 4, 8, are follow ed then, w hich indicate the total number
size in bytes. If the number size is not specified, numbers are considered to be bytes. Keep in mind that hex digits are read in
byte-read mode by default.

\i The read mode of decimal numbers. Numbers can be represented in floating-point notation in this mode. The size number of 2,
4 or 8 can also be indicated after i.

'5 \ (50 + 45) afdcCCAB FF * comments *\

\h 567, 12 ; \"string" 45 \i4 255 3 +356 -1 45.56"'
'0 FF fe fd ab cd la 2b 3c 4d 5e 6f \<c:\temp\my.exe>'

Page 11

Macros

Macros are constants that are substituted during compilation. Macros can be used as identifiers, numbers, strings, binary data and
collections. To substitute a macro for its value, you should specify the name of the macro betw een the '$' characters. If a macro is
follow ed by a character that cannot be used in a name, you can leave out the '$' character at the end. Macros are not variables
and you cannot assign any values to them. Macros are defined w ith the define command. You can also use macros for
conventional compilation in the ifdef statement.

define {
a = "str"
b =10

}

print ("\aing \($b + 20)")
There are the follow ing predefined macros. You cannot redefine them.

Predefined macros

$_FILE The full name of the current source file.
$_LINE The current line of the source file.

$_DATE The current date in the format DDMMYYYY.
$_TIME The current time in the format HHMMSS.
$_WINDOWS Equals 1 in Window s.

$_LINUX Equals 1 in Linux.

Related links

The define command
The ifdef command
Macro expressions

Page 12

Collections

Collections make it possible to store data of different types together. Besides, they can be used to initiate arrays and any other

structures. Also, collections can be used to pass an undefined number of parameters of different types to functions and methods.

The collection type corresponds to collections. Collections are defined w ith braces %({ ... }. You can specify different types of
data or other collections separating them by commas insides braces. Global variables can be initialized by collections w hich
contain only constants.

global
{
arrstr months = %{"January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December" }
}
In order to initialize a structure w ith the help of collection, the appropriate assignment operator is required to be defined.
type test
{
uint num
str string
}
operator test =(test left, collection right)
{
if right.gettype(0) != uint : return left
left.num = right.val(0)
if right.gettype(1) != str : return left
left.string = right.val(1)->str
return left
}

After that, a value is assigned to the fields, as follow s:

test myt

myt = %{ 10, "test string" }

Using the collection argument in the function, you are able to pass a variable number of arguments of different types.

func outvals(collection cl)

{
uint 1
fornum i, *cl

{
print ("\ (i) = \(cl[i 1)\n")

}

The function call has the form.

outvals(${ 10, 20, 30, 40 })

Page 13

The program structure. Preprocessor

A program in the Gentee language can consist of one or several files. The main element of the program is a command. The
command starts on a new line, most commands contain blocks enclosed in curly braces { }. It is possible to divide all commands
into four groups by their purpose.

Preprocessor commands

The preprocessor is responsible for the substitution of macro values, the replacement of service characters and conditional
compilation. The preprocessor performs its operations right during the compilation of the current fragment of the source code.

The define command The definition of macros.

The ifdef command Conditional compilation.
Executable code commands

These commands contain statements and are responsible for the executable part of the program.

The extern command Predefined functions, methods and operations.
func Function.

Method declaration: method Method declaration.

Redefining operator operations Operator redefinition.

Properties Function-property.

text Text function declaration.

Definitions of types and global variables

The type command Declaring type.

The global command Global variable declaration.
Other commands

The include command Including Gentee files.
The import command Importing functions from DLL.
The public and private com mands Name protection commands.

This is an example of the simplest program.

/* Example */

define

{
NAME = "John"

}

func main<main>

{
print ("Hello, \SNAME!")
getch ()

}

Page 14

Comment. Character substitution

When running, the compiler deletes all comments, replaces macros w ith their values and replaces the formatting characters.

I*..*I Comments can appear anyw here. A comment begins with a forw ard slash/asterisk combination /* and is terminated by end
comment delimiter */.

/I Single-line comments. These comments are terminated by the End-of-Line characters.

/*
This is a comment.
*/
a=4+4+5 // This is a comment too.

; The new line character is the separating character betw een expressions and statements. A semicolon is replaced w ith a new
line character. You can use this character if you w ant to put several statements on one line.
A colon is replaced w ith an opening curly brace and a closing curly brace is added at the end of the current line.

// These examples are equal

if a == 10 : a=Db +c; ¢c=d+ e
if a == 10
{
a=Db + c
c=d+ e
}

Page 15

The define command

The define command is used to specify macros. You can assign a constant to a macro, w hich applies to the follow ing types of
constants: a number, a string, a binary data or an identifier name, furthermore, you can assign a macro to the value of another
macro. Later on, the name of the macro should be specified as $macroname or $macroname$ for it to be replaced w ith its
value. It is possible to redefine a macro in other define. Macros are defined enclosed w ithin curly braces, and each line contains
only one macro definition. The macro definition consists of a name follow ed by the equal sign = and the appropriate constant or an
expression. We recommend that you use only uppercase letters in the names of macros.

define
{
A = OxFFFF; B = 3.0
NAME = "First and Last Name:"
ID = idname
BB = S$B
}
Attributes

You can specify the export and namedef attributes for define. Use the export attribute if you distribute the module as byte
code (a .ge file) and w ant to make it possible to use these macros in other programs. If define has the namedef attribute, all its
macros can be used w ithout specifying the '$' character.

define <export namedef>

{
FALSE = 0
TRUE = 1
}
func uint my(uint param)
{
if param >20 : return FALSE
if param <10 : return S$SFALSE // $FALSE == FALSE
return TRUE
}

Specifying name for define

You can specify a name for define. In this case, it is possible to access macros both directly and specifying the define name. It is
made in order to avoid conflicts betw een macros from various modules. In this case, access to a macro looks like this:
$definename.macroname.

// filel.g
define myflag< export >
{

FLAGl = OxFFFO

FLAG2 OxFFF1

}
// file2.g
define flags
{
FLAGl1 = 0x0001
FLAG2 0x0002

func uint my(uint param)
{
if param & S$myflag.FLAGl
{ ...
if param & $flags.FLAGL
{ ...
}
Enumeration

Gentee has no separate command for defining enumerations. You can use the define command for that. If a macro has no value
assigned to it, its value becomes one time greater than the value of the previous macro. If there is no previous macro or it is not an
integer, the value of the current macro is set to 0. Macros can be separated by spaces in case of enumeration.

define

Page 16

VALO VALl VAL2 // VAL2 = 2

ID1I = 100

ID2 ID3 ID4

ID5 // ID5 = 104
}
Expressions

Not only numbers, but also expression results can be assigned to macros. Either constants or other macros can be operands in
expressions. You can take a look at the full list of possible operations on the Macro expressions page.

define
{
VALO 10 + 245
VALl = S$VALO + (12 - 233)
VAL2 = SVALl & OxFFFF
SUMMARY = S$VALO | S$VAL1 | S$VAL2

}

Related links
The ifdef command
Macros

Macro expressions

Page 17

The ifdef command

The ifdef command of conditional compilation allow s you to include and exclude some parts of the program for compilation
depending on some conditions. A conditional expression must follow the ifdef keyw ord and the part of the program that should be
compiled if the condition is met (not equal to 0) should come after it in curly braces. You can use an expression consisting of
macros and constants as a condition (a number, a string, a binary data). You can take a look at all possible operation for
expressions on the Macro expressions page.

In the example below the myfunc function w ill be compiled if the macro $MODE is a number not equal to 0 and not an empty
string.

ifdef $MODE

{

func myfunc(uint param)
{ ...
}

You can use ifdef not only on the top embedment level, but also inside any other command and even inside expressions. Besides,
it is possible to embed ifdef commands inside each other.

func myfunc(uint param)

{
uint i = param
ifdef $SABC == 3 || S$NAME == "Private"
{
i *= 2 + ifdef !SMODE { 100 } else {200}
}
}

elif and else

If the condition is false and another part of the program should be compiled, the else command is used. If there are more than tw o
variants of compilation, you can use the elif command w ith an additional condition. You can have several elif commands in a row
and the else command at the end.

define
{
ifdef SMODE == 5
{
NAME = "Public"
MODE= 10
}
elif SMODE == 4
{
NAME = "Debug"
}
elif SMODE > 5 : NAME = "Private"
else : NAME = "Unknown"
}
Related links

The define command

Macros
Macro expressions

Page 18

Macro expressions

When you define macros w ith the help of The define command and in The ifdef command, you can use simple expressions

w ith constants and macros. Operands must be of the same type except for logical operations && and ||. It is possible to use
parentheses to specify the order of calculating the expression.

Operation Type of operands
rithmetic operators
int uint long ulong float double
int uint long ulong float double
int uint long ulong float double
int uint long ulong float double
it operators
int uint long ulong
| int uint long ulong
i int uint long ulong
Logical operators

Comparison operators
F= int uint long ulong float double str buf
= int uint long ulong float double str buf

= int uint long ulong float double
<= int uint long ulong float double
> int uint long ulong float double
< int uint long ulong float double
Unary operators

+ int uint long ulong float double
- int uint long ulong float double
I~ int uint long ulong

&& int uint long ulong float double str(1 if the length >0) buf(1 if the length >0)
1] int uint long ulong float double str(1 if the length >0) buf(1 if the length >0)

! int uint long ulong float double str(1 if the length >0) buf(1 if the length >0)

Type of result

int uint long ulong float double
int uint long ulong float double
int uint long ulong float double
int uint long ulong float double

int uint long ulong
int uint long ulong
int uint long ulong

int uint
int uint

int uint
int uint
int uint
int uint
int uint
int uint

int uint long ulong float double
int long float double

int uint long ulong

int uint

7 + SYEAR - 2000
2.3 * (VALL - SVALO / 2.0)
SVALFLAG | 0xff00

SMODE1l || (SMODE2 == 3 && SCOMPILE == "WINDOWS"
!

SPROGNAME
Related links
The define command
Macros
The ifdef command

= "My Application”

&& SPROG

= "Debug"

)

Page 19

The include command

The include command is used to include additional files w ith source code in the Gentee language or w ith already compiled byte
code. You can include ready-made libraries and use their functions after that or combine several modules into one project. If you
specify a file with the .ge extension that contains compiled byte code, it is included w ithout additional compilation. If some file is
included more than once, the compiler ignores the repeated inclusions of the file.

Included files are listed inside curly braces, either one file on a line or they must be separated by commas. You can specify both
absolute and relative paths to files. The names of files are strings that is w hy it is necessary to either double the '\' character or
put '$' before the braces.

include

{
"myfilel.g"
$"c:\path\myfile2.g"
"c:\\mylib\\mylib.g"
$S"SMYLIB\library.g"
$". . \src\library.g"

}

The include command can be used in any place of the program and in any Gentee files. You can specify include inside the ifdef
command.

ifdef SMYPROG

{
include : "myfilel.g"
}
// OR
include
{
ifdef SMYPROG : "myfilel.g"
}

You can configure the compiler profiles in such a w ay that you alw ays include certain files and then you do not have to define
them w ith include. You can also list directories to search for files in a profile. In this case, it will be enough for you to specify only
the file names in the include command and the compiler w ill automatically find them in these directories.

Page 20

The import command

The im port command allow s you to export functions from DLL. The keyw ord import is follow ed by DLL filename, w hich contains
imported functions, and afterw ards w e open the description block. Each line of the block contains a description of the imported
function, i.e. a type of the return value, if any, and a function name are aligned w ith parameters separated by commas and
enclosed in parentheses. You can substitute a new function name for the name of the imported file. To rename the function, you
need to use -> after the description and a new name. When function is imported, calling DLL function is made in the same w ay as
calling function w ritten in Gentee.

import "kernel32.dl11"

{
uint CloseHandle(uint)
uint CopyFileA(uint, uint, uint) -> CopyFile
uint CreateFileA(uint, uint, uint, uint, uint, uint, uint) -> CreateFile
uint CreateProcessA(uint, uint, uint, uint, uint, uint, uint, uint,
STARTUPINFO, PROCESS INFORMATION) -> CreateProcess
}

If you are going to run the Gentee program from your ow n EXE file, you can use functions from the EXE module. To do it, specify
the name of the DLL file as an empty string and read about passing the addresses of the functions to be imported in the
Configuring and running Gentee section.

Attributes

cdeclare

Means that the __cdecl functions are imported. By default, the imported functions are considered to be the __stdcall functions.
import "myfile.dll" <cdecl>

{

}

link

In this case, a required .dll file wiill be included in a .ge file; w hile launching a program the .dll file is w ritten to the temporal directory
w here the program load it. The .dll file will be deleted after the program has ended. In other w ords, if you don't w ant some extra .dll
files to be distributed, but you doubt if the files have been stored before in a user's computer, this attribute w ill be helpful for you. It
is desirable that the complete path to the .dll file should be specified.

import $"c:\mypath\myfile.dl1l" <link>

{

}

exe

This attribute should be used if you get to know the relative path from your program to the .dll file. This is an example illustrated
my.dll loading from the subdirectory Plugins.

import $"plugins\my.dll" <exe>

{

Page 21

The public and private commands

All functions, metods, types or other elements of the Gentee language become publicly available by default after they have been
defined. Take advantage of the private command in order to make elements be accessible only w ithin the file, w here they have
been defined. All language elements that follow this command, w ill be accessible before the current .g file has compiled. After that,
names of these elements will be deleted, you w ill be unable to find the elements by specifying their names. The public command
makes the next elements be publicly available. You can use either public or private in the source as necessary. These
commands are likely to be used for functions, methods, operators, types and global variables.

private

func str mylocal

{

public
func str myfunc

{

mylocal ()

Page 22

Types and variables

Gentee is a strongly-typed language that is w hy types occupy a very important place in programming in Gentee. All types can be
divided into three groups: numeric types, structural types and the reserved type.

Numeric types

All numeric types are built into the language. uint is the most w idespread numeric type. The Gentee language has neither pointers
nor logic type, the uint performs their functions. The byte, ubyte, short, ushort types are considered as int or uint types
(depending on the sign) w hen arithmetic operations are performed. If you specify them as fields in structural types, they will
occupy the corresponding number of bytes.

Type name Size of type Minimum Maximum Comments
nteger types

byte 1(4) -128 +127 signed
ubyte 1(4) 0 +255 unsigned
short 2(4) -32768 +32767 signed
ushort 2(4) 0 +65535 unsigned
nt 4 -2147483648 +2147483647 signed
uint 4 0 +4294967295 unsigned
ong 8 -2"63 +2763 - 1 signed
ulong 8 0 +2764 - 1 unsigned
Floating types

float 4 (+ or -)10E-37 (+ or -)10E38 ;
double 8 (+ or -)10E-307 (+ or -)10E308

Structure types

Structure types are defined by the type command. Types string (str), binary data (buf), collection (collection) are embedded
into the language. A lot of types are defined in the standard and other libraries (arrays, hashes etc).

Type reserved

The reserved type is of special significance, w hich belongs neither to the fundamental types nor to the structure ones. This type
is denoted by the array of bytes, w hich is defined and used as the array. The distinctive feature of the reserved type is that, the
memory space is reserved w here it has been defined. For example, you can specify a field in a structure reserved field[50]. This
means that a memory space of 50 bytes w ill be reserved in the structure. If you specify the same code inside a function then you
reserve 50 bytes in the stack for this local variable. The size of memory reservation allow s up to 65 535 bytes. Bear in mind that
you should not use an expression in order to specify the required size. It is a constant number that must be enclosed in square
brackets.

Page 23

The type command

Structure types are defined by using the type command. This command is follow ed by the specified type name and fields
description in braces.There can be one or more fields of the same type defined in each string of the block. First, a type name is
specified, w hich is follow ed by field names separated by commas or spaces. The field can have a numeric type as w ell as the
previously defined structure type. Fields of the structure type are organized in memory as they have been described in the source
code; if the field has a structure type, the structure of this type is completely embedded in the final structure. When fields are
defined, dimensions separated by commas and enclosed in square brackets and the item type follow ed the keyw ord of can be
determined. To get or assign a field value for a variable, its name should be specified after a full stop.

type customer

{
str name, last name
uint age
arrstr phones|[5]
}
customer custl //
custl.name = "Tom"
custl.age = 30
custl.phones[0] = "3332244"
Attributes
index

Types can contain other elements, like a string array. You can specify w hat type of elements can be included in the object of this
type by default. To do this, assign a corresponding type to this attribute. If elements have the same type by default (for example,
tree), write index = this.

type arrstr <index=str inherit = arr>

{

}

inherit

You can inherit types. You have to use the attribute inherit = éiyoéia. See more details in Type inheritance.
protected

Gentee makes it possible to restrict access to fields of the type from other modules. The specified protected attribute is used for
this purpose. In this case, all fields of the type wiill be accessible before the current file has compiled. Otherw ise, fields of this type
w ill be unaccessible.

type mytype <protected>

{

}
Additional features

For any structure type you can define methods that will allow you to
Perform additional actions during initialization and deletion of a variable

Specify of w hen describing variables of this type
Use square brackets w hen addressing individual elements

Use foreach to scan elements of this type.
These methods are described in System type methods.

Related links

e Type inheritance
e System type methods

Page 24

Type inheritance

Gentee allow s you to inherit structure types. For this purpose you have to specify an attribute inherit w ith the name of the
parent type.

type mytype <inherit = str>
{

uint i

uint k

}

Specify an empty curly brackets or a collon if a new type does not have additional fields.
type mynewtype <inherit = mytype>
You cannot inherit base numeric types and the type reserved. The type inheritance allow s you to get fields of any parent type.

type my <inherit = mytype>
{

str name

my m
m.i++

Also, you can call methods or functions of all parent types. The compiler finds a suitable method or function w hen you call some
function or method. For example, there are the follow ing functions

func print(mytype mt, uint i)

{
print ("MYTYPE PARAMETER = \(mt.i + 1)\n")
}
func print (mytype mt)
{
print ("MYTYPE = \(mt.i)\n")
}
func print(my m)
{
print ("MY = \(m.i)\n")
}
You have
my mm

print (mm, 20)
print (mm)

The first print outputs MYTYPE PARAMETER = 20 and the second print outputs MY = 0, but nor MYTYPE = 0. The situation w ith
methods or operators is like. If you need to call just a parent method or a function then use the typecasting operator '->' w ith the
parent typename. print(mm->mytype) displays MYTYPE = 0.

So, Gentee gives you the such main object-oriented programming features as the inheritance and the polymorphism.

Related links
° The type command

Page 25

System type methods

For each type you can define methods that w ill simplify the w ork w ith variables of this type and increase its possibilities. Lets take
some abstract type.

type test<index = uint >
{

uint mem

str name

uint itype

ubyte dimO

ubyte diml

uint count
}
Initialization
In Gentee the initialization of variables and fields of any type is automatic. If you w ant to perform additional actions during
initialization of a type variable, define the method init. We should note that all number fields are initialized as zeroes, and fields of
other types are also initialized according to descriptions of those types. For example, if the field has a str type, it will be initialized
w ith an empty string at once.

method test test.init

{
this.mem = malloc(4096)
this.name = "TEST"
itype = uint
return this
}
Deletion

If before deleting a variable of this type you w ant to perform additional actions, specify them in the method delete.

method test.delete : mfree(this.mem)
Using the of operator
Lets assume that a variable of this type can contain variables of another type. In this case you should have an opportunity to
indicate it w hen you describe the variable. For example, test mytest of double. You should define the oftype method for the
compiler to understand the of operator. It should have a parameter giving the element type.
method test.oftype(uint itype)
{
this.itype = itype
}
Specifying size and dimension

Lets assume that w hen you describe a variable you w ant to create several elements at the same time and also specify the
dimension of this variable. For example, test mytest[10,20] of double. To do this, you should describe one array method for
each possible dimension.

method test.array(uint first)

{
this.count = first
this.dim0 = first
}
method test.array(uint first second)
{
this.array(first * count)
this.dim0 = first
this.diml = second
}

Addressing by an index

If you w ant to get the i-th element of the variable of this type using brackets, you should describe one index method for each
dimension. You can specify not only numbers, but any other types as indexes. To do this, you only need to define a index method
w ith a parameter of a corresponding type. Note that the index method must return the pointer to the element it finds!

method uint test.index(uint first)

{

return this.mem + first * sizeof(this.itype)

Page 26

method uint test.index(uint first second)

{

return this.index(this.dim0 * first + second)

method uint test.index(str num)

{

return this.index(uint(num))

test mytest[10]

mytest["0"] = 10
mytest[1l] = 20

print ("0 = \(mytest[0]) 1 = \(mytest["1™ 1)")

Using the foreach operator

The Gentee language has a foreach operator that scans all elements of a variable of specified type. If you w ant to use this
operator for your type, you should define the eof, first, next methods w ith a fordata parameter. The icur field of fordata stores
the index of the current element during scanning. You should zero it in the first method and increase in the next method.
method uint test.eof(fordata fd)

{

return ?(fd.icur < this.count, 0, 1)

method uint test.first(fordata fd)
{

return this.index(fd.icur = 0)

method uint test.next(fordata fd)
{

return this.index(++fd.icur)

}

test mytest[10]
uint sum

foreach curtest, mytest

{

sum += curtest

}
Redefining operators

You can use all kinds of operations like =, +, *, ==, I=, * etc. for variables of any type. To do this, you need to describe
corresponding commands of operator. You can find more details at the Redefining operator operations page.

operator test =(test left, collection right)
{
uint 1i
fornum i=0, *right
{
if right.gettype (i) == uint
{
left[i] = right[i]->uint

}

return left

Page 27

test mytest[10] = %{ 0, 1, 2, 3, 4, 5, 99,
Related links

The type command

Redefining operator operations

foreach statement

Method declaration: method

8

Page 28

The global command

Global variables are declared by using the global command. All necessary variables defined w ithin the curly brackets follow the
global command. You can put variables of the same type together in a single line; first, you specify a type name, w hich is follow ed
by variable names separated by either a comma or a space. For example,

global
{
uint g cur summary mode
str name = "John", g result, company

}

If the variable type supports the use of of and brackets, you can specify those additional parameters w hen you describe a global
variable. Besides, number variables, along w ith strings str and binary data buf can be initialized at the moment w hen they are
described w ith the help of the assignment operation '=". When you initialize variables, you can use macroexpressions. By default,
the variable is initialized w ith zeroes or by calling the corresponding initialization function.

You can address any global variable from the moment its declared in further functions and methods.

global
{
str a b = "My string", c
uint num = 25 * $DIF, num2
double dx = $DX + 0.1
arr x[10] of int
arrstr months = ${"January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December" }
}
Related links

° Macro expressions
e System type methods

Page 29

Local variables

Local variables serve for temporary storage of intermediate results w hen a function or a method is executed. A local variable can
be declared in any part of the function body including nested blocks taken in braces. Each variable must be given its ow n type
declaration in a new line, that contains a specified type name and variable names separated by commas.

If the variable type supports the use of of and brackets, you can specify those additional parameters w hen you describe a local
variable. Besides, number variables, along w ith strings str and binary data buf can be initialized at the moment w hen they are
described w ith the help of the assignment operation '=". When you initialize variables, you can use macroexpressions. By default,
the variable is initialized w ith zeroes or by calling the corresponding initialization function.

func myfunc(uint param, str name)

{
str a b = "My string" + name, c
uint i = 25 * param + 3
uint k = 10, 1 = 2
arr x[k, 1] of uint
arrstr months = %{"January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December" }
}

Scope of local variables

The scope of a local variable extends from its declaration to the end of the block in w hich it w as declared, including nested blocks.

Global and local variables are likely to be redefined; in other w ords, w ithin a block a new ly declared variable shares the same
name as the variable previously declared. It is possible that the new variable may be of another type. The last-mentioned variable
w ill be available till the end of the current block, and the previously declared variable becomes hidden. Once the block ends, the
variable that w as subsequently hidden is again available. Actually, the objects declared as local ones are automatically created
w hen the block begins execution, and destroyed w hen the block ends. You can create objects w ith the help of the new service
function. In this case, a programmer should keep an eye on deleting objects, using the destroy function. As local variables are
deleted w hen w e exit the function, you can only return numeric local variables.

func myfunc

{
uint a = 10
... // a == 10
{
... // a == 10
uint a = 3
// a == 3
while
{
// a == 3
}
// a == 3
}
// == 10
}
Related links

Returning variables
System type methods

Page 30

Function declaration: func

A function consists of tw o parts: a declaration and a function body. When you declare a function, you specify the keyw ord func,
the type of its return value, its name, its attributes enclosed in angle brackets and its parameters enclosed in parentheses. Only the
function name is required. When you do not specify the type of its return value, the function does not return any values.

A body of a function or a method is everything included in braces that follow the function description. The function body can
contain subfunctions, expressions, constructions and descriptions of local variables.

func uint sum(uint left right)
{
return left + right
}
Attributes
entry
This attribute is specified for functions that must be started automatically before the main function is called.
main
This attribute is specified for the main function w ith w hich the program is started. If there are several functions w ith this attribute,
the last function w ith main attribute w ill be called. The main function is run after all entry functions are called. Functions that
have main or entry attribute should not have parameters.
func uint myprog<main>

{
print ("Hello, World!™)
getch ()

}

result

Gentee does not allow returning a structural type from a function if it belongs to (is described inside) this function. This attribute
makes it possible to evade this restriction. You can find more details about using it at the Returning variables page.

alias

If you need to get and transmit a function, method or operator identifier somew here, you can use this attribute. As functions and
methods can have the same names, but different parameters, finding the necessary function can lead to some difficulties. You can
assign an alias name to the attribute and use this name as a variable function identifier.

func uint myfunc verylongname<alias = myfunc>(uint param)

{
return param * 10
}
func str mystring<result>
{
result = "Result string”
}
func main<main>
{
print ("Val= \ (myfunc->func(10))")
print (mystring())
getch ()
}
Parameters

Each parameter declaration is a comma-delimited series of parameter names w ith the type identifiers specified after a type name,
then follow ed by a comma or space and a new type name and parameters. If a function takes no parameters, omit the identifier list
and the parentheses in its declaration. You can define functions w ith the same name but w ith different parameters. In this case,
w hen you call a function the compiler looks for a function w ith the same name and parameters.

When you describe parameters, you can use brackets to specify the dimension and the of operator. When you describe such
parameters, you do not have to specify a precise number of elements in brackets.

func uint myfunc(uint a b ¢, byte d, str stl st2, arr marr([,] of uint)

{

}

Addressing the parameters is the same as addressing local variables. All numeric types are given to a function or a method by
value. That means you can change the value of the parameter w ithout any consequences. All structure types are given by
reference. In this case all the changes you have made w ill happen to the original variable that you passed as a parameter.

Page 31

func str myadd(str left)
{

left += " OK!"

return left

func main<main>
{
str val
myadd (val = "Process")
print (val)
}
Related links
e Returning variables
e Local variables
e Subfunction declaration: subfunc

Page 32

Method declaration: method

You can define different methods for any types. Any method is a function associated w ith an object of the appropriate type, that
the method should operate on. A method is defined by specifying the keyw ord method follow ed by the name of the return type (if
it is required), an object type and a method name follow ed by a separating period. Like declaring a function, you should specify
method parameters follow ed by its body: object.methodname(parameters).

The parameter this is created automatically w ithin the method; furthermore, this parameter contains the object to w hich the given
method is called. The parameter this has the same type as the object does.

method uint str.islast(uint ch)

{
return this[*this - 1] == ch

}
func main<main>
{

str mystr

if mystr.islast('\")

{

}
}

You can specify result and alias attributes for method like for functions. Methods are responsible for object initialization and
destruction, getting index and type conversion as w ell as for other operations. See more details on the System type methods
page.

Type conversion

Type conversion is also declared w ith the help of the methods. A source type is specified as the object type of the method and a
destination type of the object is specified as the method name. If the destination type is structured you must use result attribute.
// uint -> str

method str uint.str < result >

{

result.outd4 ("%u", this)

// str -> uint
method uint str.uint

{
uint end
return strtoul (this.ptr (), &end, 0)
}
func main<main>
{
str mystr
uint a = uint("100")
mystr = str(a)
}
Related links

Function declaration: func
System type methods

Page 33

Redefining operator operations

Gentee enables objects to do new operations using the existing operators (=, ==, +=, +, *, <, == etc.). Moreover, the statement
priority keeps permanent. The operation processing is executed w ith the help of special function-operators w hich include the
keyw ord operator. Then you should specify the result type, the operator represented by characters and one or tw o parameters
w hich are subject to the operation (either unary or binary). The parameters type coincides w ith the operands type, thus the
parameters will contain the operand values. If the operation is considered to be binary, the first parameter represents the left
operand and the second parameter represents the right one. Operands can have different types. If the result of the operation is a
new object (for example, adding) then you must use result attribute. Also, you can define alias attribute if you need that.

If you w ant to describe comparison operators for your type then you can take only ==, < and > operators . Operators !=, >=, <=
may not be described and are compiled to ==, < and > automatically.

operator str +<result>(str left right)

{
(result = left) += right
}
operator str +=(str left, int wval)
{
return left.outd ("%i", wval)
}
func main<main>
{
str dest = "Zero", a="One", b="Two"
print((dest = a + b)+= 323)
}
Related links

Function declaration: func

Page 34

Declaring text function

The text command is used specifically to w ork w ith text data. It allow s you to generate text of any complexity and size.

When you declare a text-function, you specify the keyw ord text, the attributes enclosed in angle brackets and the parameters
enclosed in parantheses. The attributes as w ell as the parameters are optional. A text-function does not return the value. The
attributes as w ell as the parameters are declared in the same w ay as functions. The body of the text function (the output text)
starts in a new line after declaring the text function and goes either to the end of the file or to the follow ing service characters: \l.

As for the simple function, strings enclosed in double quotes are inserted into the source code; as for the text function, on the
contrary, the source code is inserted into the text.A text function outputs a text to a console or to a string. It is subject to the text
function call.

Console output

Output to the console is carried out w ith the help of the @ unary operation.

@nametextfunc(parameters)

String output

Output to a string is carried out w ith the help of the @ binary operation w here the output string is specified on the left. The result
of the text function will be added to the string.

stemp @ nametextfunc(parameters)

Additional features

The service character and the commands operated in a string are used in a text function. Furthermore, a text function uses the
follow ing additional commands.

\I' The end of a text function. By default, a text function goes to the end of the file.
\@name(...) Calling another text function. The output mode (to a console or to a string) is not changed.

\{...} Insertion of the code block. You can specify the source code enclosed in braces as in the function body. This block fits the
block of the low est level of the function and you can declare subfunctions there. Use operation @"string" in the code block to
output a string to the current output stream.

text hello(uint count)
Must be \ (count) strings
\ {
uint i
fornum i, count : @"\ (i + 1) Hello, World!\n"
}Welcome to Gentee!\!

func b <main>

{
@hello(3) // Write to console
@"Press any key...\n"
getch ()

str out
out @ hello(5)
print (out)
getch ()

}

Current output

You can use the current output string by the using this. If this equals zero then the console is the current output of the text
function.

Related links
Function declaration: func
Strings

Page 35

Properties

Gentee provides you w ith the property in order to get or set values of the fields of the structured types. Using the properties
you can hide a direct access to the fields and perform additional calculations in order to get a field value or set a field value w ith
the help of the assignment operator. A property name must differ from a field name, because a direct access to a field has a
higher priority; otherw ise, a field value wiill be got or set.

The get property, that returns a value, must contain no arguments.

type mytype

{
str val
}
property str mytype.value
{
return this.val
}

The set property, that defines a value, must contain one argument. Also, the set property can return a value.

property str mytype.value(str newval)

{
if *newval : this.val = newval
else : this.val = "empty"
return this.val

}

A property name is specified in the same w ay as a field in order to call a property. The set property is called if it is specified on the
left side of the assignment operator; otherw ise, the get property is called.

func myfunc

{
mytype myt
myt.value = "New value" // set
print (myt.value) // get
}
Related links

Function declaration: func

Page 36

The extern command

You cannot call any function before its definition. The extern command provides you w ith preliminary declaration of a function, a
method, a property or an operator. The command allow s you to call a function before it has been defined. For example, a recursive
function call from another function.

The keyw ord extern is follow ed by the block that contains function declaration. Each line of the block contains either function,
method, operator or property declaration, excluding their bodies.
extern
{
func uint b (uint i)
func uint c(str in)

}
func uint a(uint 1)
{
return b(2 * 1) + c("OK OK")
}
func uint b (uint 1)
{
return i + 20
}
func uint c¢(str in)
{
uint ret i
fornum i, *in
{
if in[i] == 'K' : ret++
}
return ret
}
Related links

° Function declaration: func

Page 37

Subfunction declaration: subfunc

Subfunctions are defined in the body of the function w ith the help of the subfunc construction. A subfunction is defined in the
low est level of the embedded block of the body. You can call a subfunction only from the function body as w ell as from other
subfunctions of the given function. It is impossible to define another subfunction and to call itself recursively, because local
variables are considered to be static. A subfunction is able to redefine other functions' names. A subfunction is actually called like
a function; moreover, a subfunction as w ell as its parameters are declared in much the same w ay as the function, except for the
lack of attributes. You can use local variables of the function w ithin the subfunction.

Subfunctions are very usefull w hen you need to execute the same code some times inside the function but you do not w ant to
describe an independent function.

func uint myfunc(int par)

{

int locvar

subfunc int mysubfunc(int subpar)

{

return locvar + par + subpar

}

locvar = mysubfunc(5)

par = mysubfunc(10) + mysubfunc(20)
}

Related links

e Function declaration: func

Page 38

Returning variables

Gentee prevents returning local variables from functions and methods if the variables are not of the numeric data type. All
structural local variables are deleted as soon as the function has finished executing. For example, if the next function is called, the
error occurs.

func str funcl
{
return "Result string"

}

In such cases, the result attribute can be used. The attribute enables you to return a result value from functions or methods.
Furthermore, using the attribute avoids defining and sending unnecessary local variables. Take advantage of this attribute in order
to use the result variable, that will be returned as soon as the function has finished executing. If a function has the result
attribute, the return instruction is not required or it must contain no expression.

func str myfunc<result>

{
result = "Result string"
}
func main<main>
{
print (myfunc())
}

Note that a function or a method of this type is called after a temprorary variable has been actually created in the calling block. The
variable is sent to the function w here it is used as the result variable.

Related links

Function declaration: func

Page 39

Statements

A function (method, operator, property) body contains some statements that are used to interrupt the sequential execution of a

program. Some of them contain blocks w hich also have nested statements.

There are several types of statements, as follow s:
Conditional statements
if-elif-else Conditional statement.

switch Case statement.
Loop statements

while-do Simple loop statement.

do-while Simple loop statement, evaluated at the bottom.

for Loop statement that provides initialization and increment clauses.
fornum Loop statement that executes a finite number of iterations and has autoincrement.
foreach Loop used for enumerating elements.

Instructions of unconditional transfer of control

return Function termination.

break Loop termination.

continue Immediate transfer of control to the next loop iteration.
label Label definition.

goto Unconditional transfer of control to a label.

®)

ther statements

E
5

Short fields management.

Page 40

if-elif-else statement

The statement consists of the follow ing parts:

if

The if part contains the if keyw ord, a conditional expression and the block executed if condition is TRUE. If the condition is FALSE,
control passes to the next part elif.

elif

The elif part contains the elif keyw ord, a conditional expression and the block executed if condition is TRUE. The statement is
likely to contain some elif parts follow ed one after another.

else

The else part contains the else keyw ord and the block executed if the condition of the if part as w ell as the condition of all elif
parts are FALSE.

The elif and the else operators are optional.

The value of a conditional expression must be numeric. The value is TRUE if it is nonzero.

//1if
if a == 1
{

b =10
}

//if and else

if a == 10 && b > 20 : b = 10
else

{ b=20"1}

//1f elif else
if a == b+10

b =10
}
elif a > 2 { b = 100 }
elif a !'= 1 || == 32 : b=1000
else : b =0
Related links

° Statements

Page 41

switch statement

The switch construction allow s you to perform different operations in case an expression has different values. The switch
keyw ord is follow ed by the initial expression that is calculated and stored as the sw itch value. Then you enumerate case
constructions in curly braces with all possible values and the source code that should be executed. One case can have several
possible values separated w ith a comma in case of w hich it will be executed. After executing the case block w ith the matching
value , the program goes to the statement coming after switch. The rest of case blocks are not checked.

switch a + b

{
case 0, 1, 2
{ }
case 3
{ }
case 4,10,12
{ }
}

If you w ant to execute some operations in case none of the case blocks is executed, insert the default construction at the end
of switch. The default statement can appear only once and should come after all case statements.

switch ipar

{
case 2,4,8,16,32
{ }
case k, k + 1
{ }
default
{
}

}

Additional features

The switch construction can be used not only for numeric expressions, but also for any types supporting the comparison
operation ==,

The same as case, it is possible to use the label label for an unconditional jump inside switch. Labels that appear after the case
keyw ord enable you to enter the appropriate case case-block from another case-block.

switch name

{
case "John", "Steve"
label a0
{
}
case "Laura", "Vanessa"
{

if name == "Laura" : goto al

}
default
{
}

}

Related links

Statements

label and goto instructions

Page 42

while and do statements
while
The w hile statement is a simple loop. The w hile statement has the follow ing parts: a w hile keyw ord, a conditional expression and

a loop body (block). The execution of the loop body is repeated until the value of the expression evaluates to FALSE. The loop is
never executed, if the value is zero w hen the test is performed for the first time.

a =20
while a < 5
{
n += a
a++
}
do-while
The do-w hile statement contains the do keyw ord, a loop body, the w hile keyw ord and a conditional expression. The execution

of the loop body is also repeated until the value of the expression evaluates to FALSE. Unlike the w hile statement, the test is
performed after the execution of the loop body is completed and the iteration occurs at least once.

a =4
do
{

a--
} while a

There are special operators for the loop terminating w hen it is required. See more details on the return, break, continue instructions

page.
Related links

Statements
return, break, continue instructions

Page 43

for and fornum statements
for

The for statement consists of the for keyw ord, a sequence of three expressions separated by commas, a loop body.

for expl, exp2, exp3
{

}

exp1 is an optional initialization expression. It is usually used for assigning the initial value to the counter variable.
exp2 is a conditional expression. The loop executes as long as the condition is TRUE.
exp3 is an optional increment expression. Actually, this expression increments or decrements the value of the counter.

The statement defined above can be performed w ith the help of the w hile loop as follow s:

expl
while exp2
{
exp3
}

The follow ing loops does the same actions.

for i=0, 1i<100, i++

for , i<100,
{

a += 1i++
}
fornum

If the loop counter i is incremented by one and the highest value of the counter is defined before the loop iteration starts, the
fornum statement is used in place of the for statement.

The fornum keyw ord is follow ed by a counter variable name, then the assignment operator and the expression (the initial value of
the counter) can be used. If there are not any assignment operators, the initial value of the counter remains unchanged. Any
integer should be treated as a counter variable. A comma delimited expression is specified,its result defines the loop termination.
This expression is evaluated once before the loop iteration starts. The loop executes as long as the value of the counter is less
than the value of the expression. Then the loop body follow s. By default, the increment operation (value of the counter is
incremented by one) is appended to the loop body by the compiler.

fornum i=0,100

{
a += 1
}
Related links
Statements

return, break, continue instructions

Page 44

foreach statement

The foreach loop is used to w ork w ith objects containing some number of elements. The type of an object must have the first,
next, eof methods. See more details on the System type methods page. With the foreach construction, it is possible to go through
all elements in the initial object.

You specify the name of the variable that w ill point to each next element after the foreach keyw ord. After that the object including
the loop and then the body of the loop come separated w ith a comma. If the object contains elements of the numeric type, the index
variable w ill contain values. If the object consists of items of the structural type, the index variable w ill point to each next element.
If you change the index variable in this case, the corresponding element in the object will be changes as well.

arrstr names = %{"John","Steve", "Laura", "Vanessa"}

foreach curname, names

{
print ("\ (curname)\n")
}
Related links
Statements
System type methods

Page 45

return, break, continue instructions
return

The return instruction is used either to return a function value or to terminate the execution of a function. The exit may be from
anyw here w ithin the function body, including loops or nested blocks. If the function returns a value, the return instruction is
required, furthermore it contains the expression of the appropriate type.

func uint myfunc

{
fornum i, 100
{
if error : return O
}
return a + b
}
break

The break instruction terminates the execution of the loop. break is likely to be located w ithin nested blocks. If a program contains
several nested loops, break w ill exit the current loop.

while b > ¢

{
for 1 = 100, 1 > 0, i--
{
if !'myfunc(i)
{
break //exit from for
}
}
b++
}
continue

The continue instruction may occur w ithin loops and attempts to transfer control to the loop expression, w hich is used to
increment or decrement the counter (for the follow ing loops: for, fornum, foreach) or to the conditional expression (for w hile and
do-w hile loops); moreover, the execution of the loop body is not completely executed. The instruction executes only the most
tightly enclosing loop, if this loop is nested.

fornum i, 100

{

if 1 > 10 && 1 < 20

{

continue

}

a += 1 // The given expression is not evaluated if i>10 and i<20
}
Related links

w hile and do statements

for and fornum statements

foreach statement

Page 46

label and goto instructions
The label and goto insrustions perform an unconditional transfer of control w ithin the function body.
label

The appearance of the label instruction in the source program declares a label. The keyw ord label is follow ed by a name - an
identifier label. Labels define w here to jump for the goto command. The label has scope limited to the block in w hich it is declared,
therefore the goto instruction transfers control to the label either inside the current block or in blocks of higher levels. Control
transferred to the label may occur before the label is declared.

goto

You can use the goto command to jump to the specified label. You should specify the name of the label to continue executing the
program from after each goto keyw ord.

func myfunc

{
{
goto mylabel
label mylabel
goto finish
}
label finish
}

Page 47

with statement

The with construction allow s you to simplify addressing the fields of a variable of the structural type. Let us take the follow ing
example.

customer mycust

mycust.id = i++

mycust.name = "John"
mycust.country = "US"
mycust.phone = "999 999 999"
mycust.email = "john@domain.com"

mycust.check = mycust.id + 100

As you can see, you have to specify the name of the variable each time. with allow s you to drop the variable name inside its
block. To do it, specify the variable name after the with keyw ord and you wiill be able to specify only the point and the name of the
corresponding field in curly braces. You can embed with constructions inside each other.

customer mycust

with mycust

{
.id = i++
.name = "John"
.country = "US"
.phone = "999 999 999"
.email = "john@domain.com"
.check = .id + 100

}

Page 48

Arithmetic operators

There are three groups of arithmetic operators.

Arithmetic operators

+ Addition. 10 + 34 = 44

- Subtraction. 100 - 25 = 75

i Multiplication. 11 * 5 = 55

/ Division. Dividing one integer into another, any fractional portion is truncated. 10 /3 =3

% Residue of division. The operation a % b returns the remainder (modulus) obtained by dividing a into b or 0, if result is a w hole
number. The modulus operator % is only used to perform division of tw o integers. 14 % 4 = 2

-(un Unary negation operator. This operation change a sign of integer or decimal numbers. -10 = -10

)

a= (5 +Db) * ((2% -235) / 3)
b= a % 10 + 0xFFO0O

Increment and decrement operators

The operators ++ and -- are unary operators and deal w ith only integers.

++ The increment operator. This operator is expressed in tw o notations: the prefix-form ++i and the postfix form i++. In the prefix
form, variable i is incremented by the integer value 1, new value of variable i is used in the expression evaluation; in the postfix
form, the increment takes place after the value of variable i is used in the expression evaluation.

-- The decrement operator. The prefix notation is --i - the variable is decremented by one and the result is this decremented

value. The postfix notation is i-- - the decrement occurs after the value of variable is used in expression evaluation.
i = ++k
while i++ < 100
{
sum += 1--
}

Bitwise operators

These bitw ise operators perform manipulation on integer operands.

& Bitwise-AND (binary). 0x124 & 0x107 = 0x104
)
A Bitwise-exclusive-OR (binary). 0x124 A 0x107 = 0x23

<< Bitw ise shift left (binary). The bitw ise shift operators shift their left operand left or right by the number of positions the right
operand specifies, bits vacated by the shift operation are zero-filled. 0x124 << 2 = 0x490

>> Bitw ise shift right (binary). 0x124 >> 2 = 0x92

~ Bitwise negation (unary). ~0x124 = OxFFFFFEDB
a =b & 0x0020 + fi | SFLAG CHECK
rand=(16807 * rand) % OxX7FFFFFFF) % (end - begin + 1) + begin

You can define these operators for any types. See more details on the Redefining operator operations page.

Related links

Redefining operator operations

Page 49

Logical operators
Logical operators

These logical operators perform manipulation on integer operands. The result of a logical operation is the integer of uint type, w hich
has either 0 value -the result is FALSE or 1 value - the result is TRUE.

&& Logical-AND (binary). Returns 0 if at least one operand equals 0.

|| Logical-OR (binary). Returns 1 if at least one operand does not equal 1.

! Logical negation (unary). Returns 0 if the operans is not 0, and returns 1 if the operand equals 0.

if a < 10 && (b >= 10 || !'c) && k
{

if a || !'b

{ ... }
}

Comparison operators

The result of this operation is the integer of uint type, w hich has either 0 value -the result is FALSE or 1 value - the result is TRUE.

== Equality.

1= Inequality.

> Greater-than.

< Less-than.

>= Greater-than-or-equal-to.
<= Less-than-or-equal-to.

%<, %>, %<=, %>=, The operators are used to compare tw o operands alternatively. For example, using these operators you can

%==, %!= compare strings by a case-insensitive value (no uppercase preference).
while 1 <= 100 && name %== "john"
{
if name == "stop" : return i < 50
}

You can define these operators for any types. See more details on the Redefining operator operations page.

Page 50

Assignment operators

The assignment operators are considered to be the binary operators. The left-hand operand of an assignment operation must be a
variable, item of array, field of structure etc. These operators have right-to-left associativity.

= Simple assignment.
+= Addition assignment. a+=b=>a=a+b

-= Subtraction assignment. a-=b=>a=a-b

= Multiplication assignment. a=b=>a=a*b
I= Division assignment.a/=b=>a=alb
%= Remainder assignment. a%=b=>a=a%b
&= Bitw ise-AND assignment. a&=b=>a=a &b
=)
A= Bitw ise-exclusive-OR assignment. a*=b=>a=a*b
>>= Right-shift assignment. a>>=b=>a=a>>b
<<= Left-shift assignment. a<<=b =>a=a<<b

As you have already noticed, except "simple assignment" you can perform the assignment w ith an operation, that is after a binary
operation of the right-hand operand and the left-hand operand is performed, the result is assigned into the left operand.

a = 10
a += 10 + 23 // a = 43
a *= 2 // a = 86

if a =2 // TRUE !!!

{...}

if == 2 // TRUE if a equals 2
{...}

One and the same expression can contain several assignment operations, each of w hich returns the assigned value. In this case,
the assignment operation is performed from right to left.

a=10 + b = 20 + ¢ = 3
// result: =3, b=23, a=33
a= (b += 10)

You can define these operators for any types. See more details on the Redefining operator operations page.

Page 51

Type reduction
The as operator
The as operator executes tw o functions: to assign a value to a variable and to redefine a type. This operator is binary, that has

right-to-left associativity. The left-hand operand must be a local variable of uint type. Depending on the value of the right-hand
operand, it can be operated in tw o possible w ays:

The first way

The right-hand operand is a structure type name. A value of the local variable is not modified, but its type is redefined w ith the
required one; the variable is assumed to store an object's address, moreover this variable can be treated as the object, ignoring
the pointer operation ->.

str mystr

uint a

a = &mystr

a as str

a = "New value"
The second way

The right-hand operand is an expression that returns an object. An address of the object is assigned to the variable, w hich
redefines its type w ith the object's type. The object type must be different from numeric types.

str mystr
uint a

a as mystr
a = "New value"

The variable type will be redefined either until the end of the current block or until the next operation as w ith the variable occurs.

Operator ->

Often you need just to specify that a variable is of a certain structural type. In this case, you can use the -> statement w ith the
name of the required structural type. Together w ith the type name, you can specify the dimension in square brackets and the type
of items w ith the help of of. The variable -> is applied to can be of not only the uint type, but any structural type.

func myfunc(uint mode, uint obj)

{
str ret
uint val
switch mode
{
case (0: myproc(obj->arrstr)
case 1: print(obj->str)
case 2: obj->mytest.mytest2str(ret)
case 3
{
val = (obj->arr[,] of ubyte)I[1,1]
}
}
}

Type fhonversion

By default, only integral types byte,ubyte, short, ushort, int, uint are automatically converted into each other, you should use
express conversion for other types. For an expression of the type to be converted to another type, it is necessary to specify a
type name, to w hich data w ill be converted, and the expression enclosed in parentheses; moreover, the conversion will occur if
the specified source type has the appropriate method. See more details about such methodson the Method declaration: method
page

str a = "10"
uint b

b = uint(a)
Related links
Method declaration: method
Fields and pointers

Page 52

Fields and pointers
Addressing fields

The . statement (dot) is used to get or set the value of a field or to call a method or a property. You should specify the name of the
field or property after the dot. You should specify parameters in parentheses in case you call a method.

type customer

{
str name, last name
uint age
arrstr phones[5]

}

customer custl

custl.name = "Tom"

custl.age = 30

custl.phones[0] = "3332244"

custl.process()

Addresses and pointers

The unary operator & gives the address of a local or global variable as w ell as the address (identifier) of a function. The operation
returns the value of uint type. How ever, if the result of any operation is an object, for example the function w hich returns a string,

the address-of operator is also apllied to the obtained object. The address-of operator &, applied to the object (structure), returns
the address of the required object and is used for a type cast to uint type.

uint a b
str mystr

a = &mystr
b = &getsomestr
b->func(a) // equals getsomestr (mystr)

You should use the -> statement to get a value by its address. The first operand must be the name of the numeric type and the left
operand must point to the value of the corresponding numeric type.

int a = 10, b
uint addra

addra = &a

b = addra->int // b =
addra->int = 3 // a = 3
Array element operation

|
-
o

Many structures or objects can include elements of other types. You can use square brackets [] to access the elements of an
object (array elements, string characters). If an object is a multidimensional one, its dimensions are separated w ith commas.
Elements are counted starting from zero. For you to be able to apply this operation to a variable, its type must have the
corresponding index methods. See more details on the System type methods page.

arr myarr[10, 10, 10] of byte

str mystr = "abcdef"
myarr[i, k+3, 4] = 'd’
myarr[0, 0, 0] = mystr[i]
Related links

System type methods
Type reduction

Page 53

Calling functions and methods

Calling function and method

A function call includes the name of the function being called and the arguments enclosed in parentheses and separated by
commas. If the function does not have any arguments, the empty parentheses follow the function name. If either a function or a
method returns a value, the function or method call may be used in the expression. The . operator is used to call a method, then the
arguments are listed in the same w ay as the arguments of a function: the variable, w hich stores a structure, is follow ed by the
point, then you specify the name of the method and the arguments enclosed in parentheses.

a = my.mymethod(myfunc(a, b + c))

a = b->mystruct.mymethod(d)

Function call via a pointer

A variable of uint type can store the address (identifier) of a function. In order to get the address of a function, the & operator is
used, w hich is follow ed by the name of the function w ithout parentheses. A function call includes the ->func and the arguments

listed inside parentheses. In this case, you ought to keep an eye on the number and types of the arguments, because the compiler
is not able to verify the arguments. The same w ay you can call methods and operators.

a = &myfunc
a->func(¢, d)
Gentee allow s you to call functions by their address. For example, you can get the function address w hen you use Window s AP

function GetProcAddress. Use the ->stdcall and the arguments listed inside parentheses. If the function has cdecl type then
use the keyw ord cdecl instead of stdcall.

a = GetProcAddress(mylib, "myfunc".ptr())
a->stdecall(1, b)
Text-function call

The @ operator is applied to call a text-function. This operation can be either unary or binary.
Unary operation
@ name(...)

If a text-function is called from the simple function or method, the text function will output data to a console. In case of calling the
function from another text-function, data wiill be outputted to the same place as the current text-function. A text function may be
called w ithout the unary @ operator. In other w ords, the text function is called in the same w ay as the simple function.

Binary operation

dest @ name(...)

If the @ operator is applied as a binary operator, the left-hand operand must be a string, to w hich data w ill be outputted from the
text function. In the example illustrated above, dest is a variable or an expression of the str type. Actually, data are appended to a
destination string.

The @ operator is used not only for the text-function call, but also for the string output. If the right-hand operand is either a variable
or an expression of the str type, this string w ill be outputted to the console or will be appended to a destination string as described
above.

str a

@mytext (10) // Console output

a @ mytext(20) // string output
@"My text" // print("My text")
Related links

Fields and pointers
Function declaration: func

Method declaration: method

Declaring text function

Page 54

The conditional operator ?

The conditional operator ? operates in the similar w ay as the if-else statement, but the conditional operator can be located in the
expression. The operator is a ternary operator (it takes three operands). The operands separated by commas are enclosed in
parentheses; the first logical (integer) expression is evaluated. If the value is nonzero (TRUE), the second expression wiill be
evaluated, the value of w hich will be a result of the conditional operation. Otherw ise, the third operand w ill be evaluated, the value
of w hich will be returned.

r =2?2(a==10, a, a + b))

if a >= ?(x, OxFFF, ?2(y <5 & y > 2, y, 2*%b)) + 2345
{

}

Page 55

Late binding operation

The ~ operation is used for late binding. This operation has a lot in common w ith the . operator (used to access a field value or
method call); how ever, at compile time it is sometimes difficult to define all methods and fields of an object, w hereas w hile
executing a program a particular method of an object is called for being assigned a field/method name, types and values of
parameters. The late binding operation is actually applied for COM objects.

An object identifier is the left-hand operand of the ~ operation, that is used for maintaining late binding; the right-hand operand is a
field/method name, that is used either for setting up a property (e.g. excapp~Visible) or for calling a method (e.g.
excapp~Celis(3,2)).

An object can maintain the follow ing kinds of late binding:

elementary method call excapp~Quit, w ith/w ithout parameters;

set value excapp~Cells(3,2) ="Hello World!";

get value vis = uint(excapp~Visible);

call chain excapp~WorkBooks~Add, equals the follow ing expressions
tmpobj = excapp~WorkBooks

tmpobj~Add

A shortcoming of late binding is that the compiler cannot check if either fields/methods or types are specified properly; it causes
problems for troubleshooting.

Have a look at the example of using late binding, w here the COM library is applied.

include { "olecom.ge"}

oleob]j excapp

excapp.createobj ("Excel.Application™, "")
excapp.flgs = $FOLEOBJ INT

excapp~Visible = 1

excapp~WorkBooks~Add

excapp~Cells(3, 2) = "Hello World!"

Page 56

Table of operator precedence

As a rule, all statements are executed from left to right, but there is such a concept as statement priority. If the next statement has
a higher priority, the statement w ith a higher priority is executed first. For example, multiplication has a higher priority and 4 + 5 * 2

is 14, but if w e use parentheses, (4+5)*2is 18.

Character operation
The highest priority
yg.~->

| &(un) *(un) -(un) ~(un) ++ -- @(un)
% * 1

+-@

<< >>

K> <=>= %< %> %<= %>=
I= == Yy== Yl=

&

A

|

&&

2(:»)

E 4= .= %= [= Y= &= |= A=>>=<<=3s
The lowest priority

Associativity

Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left

Parentheses () change the order in w hich expressions are evaluated. You can use square brackets in order to deal w ith the
elements of the array or the indexed elements, for example, a character in a string. The unary operators include !, &
It is the prefix notation that is used for all unary operators, except increments. As for increment operations ++ and --, they can be
occured either in the prefix or in the postfix notation. The follow ing operators &, *, -, @, ~ are likely to be binary as w ell as unary

operators. All other operators are binary (taking tw o operands).

Page 57

Gentee Language in BNF

You can use ANSI character set from 0 to 255 in a source code. ANSI character set from 32 to 128 are specified in the diagram
defined above, other characters are represented in hexadecimal notation, for example 0x09 - a tab character. Some preprocessor

commands are not show n in these diagrams.

<binary digit> ::='0" | "1'

<decimal digit> ::= <binary digit> | '2' | '3" | '4' | '5" |'6"|'7"|'8" | '9"

<hexadecimal digit> ::= <decimal digit> | 'A" |'B"|'C' |'D' |'E' |'F"|'a" |'b" | 'c' | 'd" |'e" | 'f'
<byte> ::= <hexadecimal digit><hexadecimal digit>

<decimal number> ::= <decimal digit> {<decimal digit>}

<hexadecimal number> ::='0' ("x' | 'X") <hexadecimal number> {<hexadecimal number>}

<binary number> ::='0" ('b" | 'B") <binary number> {<binary number>}

<character code> ::= ""'<any character>
<floating point number> ::= <decimal number>'."[<decimal number>]

<real number> ::= ['-'] (<floating point number> | <floating point number> ("e' | 'E’) ['+' | '-'] <decimal number>) ['d" | 'D"]
<natural number> ::= <decimal number> | <hexadecimal number> | <binary number> | <character code>

<integer number> ::=['-'] <natural number> ['I' | 'L"]

<number> := <integer number> | <floating point number> | <real number>

<letter> :="A"|'B'|...|'Z"|'a"|'b"| ... | 'z' | 0x80 | 0x81 | ... | OXFF

<space> ::= 0x20

<tabulation> ::= 0x09

<end-of-line> := 0x0D 0x0A

<delimiter> ;= "1 | ™ | |'$" "' |8 | | [[|4 5[T S @ T Y 1T I PR I

<tabulation> | <space> | <end-of-line>

<character> ::= <decimal digit> | <letter> | <delimiter>
<name> ::= (<letter> | '_") {<letter> | '_' | <decimal digit>}
<function name> ::= <name>

<variable name> ::= <name>

<type name> ::= <name>

<field name> ::= <name>

<method name> ::= <name>

<attribute name> ::= <name>

<macro name> ::= <name>

<str character> ::= <tabulation> | <space> |"I"|'#' | ... |'["|']"| ... | OXFF
<ext str character> ::= <str character> | '\'

<any character> ::= <ext str character> | "™

<macrostring element> ::= {<str character>|<end-of-line>| '$'<macro name>}

<const string element> ::= <str character> | <end-of-line> | "\ | "\"" | "\a" | "\b" | "\f' | "\n" | "\r' | "\t" | "\I' | "\O'<byte> | "\$'<macro

name>'$" | "\$"' {<macrostring element>} """ | "#" | "\=" ("\" |/~ | AT '&" | ") | "\%['[{<ext str character>}]']'{<ext str
character>}[{<ext str character>}] | "\[' {<any character>}']" | "\<'{<macrostring element>}">'

Page 58

<string element> ::= {<ext str character>} | "\(*<expression>")"

<const string> ::="" { <const string element> | "\I'{<const string element>| " }"\I" }

<string> ::= """ { <string element>| "\I'{<string element>| "™ }'\I" }'"*

<const binary data element> ::= "\h'<space> [(2" | '4' | '8") <space>] | "\i'<space> [('2'|'4' | '8") <space>] | <hexadecimal
digit> {<hexadecimal digit>} { (<space> | '," | <end-of-line>) <hexadecimal digit> {<hexadecimal digit>} } | <integer number> {
(<space> | ', | <end-of-line>) <integer number>} | '\'<const string> | "\[' {<any character>}']" | "\$'<macro name>'$" | "\$""
{<macrostring element>} "™ | "\<'{<macrostring element>}'>"

<binary data element> ::= <const binary data element> | "\("<expression>")"

<const binary data> ::= """ {<const binary data element>}

<binary data> ::= """ {<binary data element>}
<const collection> ::="%{' <constant> {*,"<constant>} '}'
<collection> ::="%({" <expression> {','<expression>} '}’

<constant> ::= <number> | <const string> | <const binary data> | <const collection>

<array> :=['[' {",'} ']"] [of <type name>]

<object> ::= <variable name> | <pointer> | <array element> | <field> | <function call> | <method call> | <expression> | <late binding>

<pointer> ::= <expression> '->' <type name> [<array>]

<parameters> ::= <expression> {',"<expression>}

<array element> ::= <object>'['<parameters>']"

<field> ::= [<object>]"."'<field name>

<late binding> ::=<object>'~" (<field name> | <method name>'(" [<parameters>] ')")
<function call> ::= (<function name> | <expression>'->'func) ‘(" [<parameters>] ')’
<method call> ::= [<object>]"."<method name>'(" [<parameters>] ')’

<lvalue> ::= <object> | <variable name> | <pointer> | <array element> | <field>

<as operation> ::= <variable name>'as’ ((<type name>[<array>]) | <object>)

<operand> ::= <lvalue> | <constant> | <string> | <binary data> | <collection> | <function call> | <method call> | <type name> | <late
binding>

<increment operator> ::="++" | '--'

<assignment operator> = "= | "%=" | '&=" | = | 4= | = | V=" | <<= | 5= A =
<unary operator> :="+"|"-' | ™" |'I'|'~' |'@"'

<binary operators :i="==" ["I=' | '>' | 1< ['<=t |t [T&&! ||| |8 1% ||| | T << [T | AT | == | Yl | %>t | %< |
%<=' | "%>=' | '@"

<operator> ::= <increment operator> | <assignment operator> | <unary operator> | <binary operator>

<assignment expression> ::= <lvalue><assignment operator><expression>

<lvalue expression> ::='&'<lvalue> | '&'<function name> | <increment operator><lvalue> | <lvalue><increment operator>
<question> ::="?"(" <expression>'," [<expression>]"," [<expression>] ')’

<expression> ::= <operand> | <assignment expression> | <lvalue expression> | <expression><binary operator> [<end-of-line>]
<expression> | '(*<expression>")" | <unary operator><expression> | <as operation> | <question>

<variable declaration> ::= <variable name> ['['<expression> { [','] <expression>}']"] [of <type name>]
<variable list> ::= <variable declaration> ['="<expression>',"<variable list>] | <variable declaration> [[',"]<variable list>]

<variables declaration> ::= <type name><variable list><end-of-line>

Page 59

<if> ::= if <expression><block> {elif <expression> <block>} [else <block>]

<w hile> ::= while <expression><block>

<dow hile> ::= do <block> w hile <expression>

<for> ::= for [<expression>] ','<expression>'," [<expression>] <block>

<fornum> ::= fornum <variable name> ['='<expression>] *,'<expression><block>
<foreach> ::= foreach [<type name>] <variable name> [<array>]','<expression><block>
<return> ::=return [<expression>]

<label> ::= label <name>

<goto> ::= goto <name>

<switch> ::= switch <expression>'{' {case <expression> {','<expression>} {<label>} <block>} [default {<label>} <block>] '}'
<block contents> ::= <block command> {<end-of-line><block command>}

<block> ::='{"<block contents>"}

<block command> ::= {<label>} (<block> | <expression> | <variables declaration> | <if> | <for> | <fornum> | <w hile> | <dow hile> |
<foreach> | <switch> | break | continue | <return>)

<parameter declaration> ::= <variable name> [<array>]

<parameters declaration> ::= <type name><parameter declaration> { [',"] <parameter declaration>} [<parameters declaration>]
<attribute s> ::= '<'<attribute name> { [',"] <attribute name>} '>'

<subfunction> ::= subfunc [<type name>] <function name> ['(* [<parameters declaration>] ')"] <block>

<function body> ::='{" (<block command> | <subfunction>) <block command> {<end-of-line> (<block command> | <subfunction>)
Y

<function declaration> ::= func [<type name>] <function name> [<attributes>] ['(" [<parameters declaration>] *)']

<func> ::= <function declaration><function body>

<method declaration> ::= method [<type name>] <type name>"."<method name>[<attributes>] ['(" [<parameters declaration>] *)']

<method> ::= <method declaration><function body>

<property declaration> ::= property [<type name>] <type name>'."<method name> [<attributes>] ['(* [<parameters declaration>] "
)]

<property> ::= <property declaration><function body>

<operator declaration> ::= operator <type name> <operator> [<attributes>] '(" <parameters declaration> *)"

<operator function> ::= <operator declaration><function body>

<text-function declaration> ::= text <function name> [<attributes>]['(" [<parameters declaration>] *)']

<text-function body> ::= { <const string element> | \@'<function name>'(" [<parameters>]> | "\('<expression>")" | "\{"(<block
command> | <subfunction>) <block command> {<end-of-line> (<block command> | <subfunction>) }'}* }['\I']

<text> ::= <text-function declaration><end-of-line><text-function body>
<macro declaration> ::= <macro name> ['=" (<constant>|<name>)]
<define> ::= define [<name>][<attributes>] '{"<macro declaration> {<end-of-line><macro declaration>} '}’

<macro expression> ::="$'<macro name> | <constant> | 'I'<macro expression> | '("<macro expression>')" | <macro expression>
("&&"|'|I' | '=="|"I=") <macro expression>

<ifdef> ::= ifdef <macro expression>'{" ... '}' { elif <macro expression>"'{" ... '} } [else '{" ... '}']

<file name> ::="" {<str character>} "™

Page 60

<include> ::= include '{'<file name> {<end-of-line><file name>} '}

<imported function declaration> ::= [<type name>] <function name> '(* [<type name> {','<type name>}]"')" ['->' <function
name>]

<import> ::= import <file name> [<attributes>] '{" <imported function declaration> { <end-of-line><imported function declaration> }
Ty

<field declaration> ::= <field declaration> [<array declaration>]

<fields declaration> ::= <type name><field declaration> {[',"] <field declaration>}<end-of-line>

<type> ::= type [<attributes>] '{"<fields declaration>{<fields declaration>} '}

<array declaration> ::= ['['<natural number> { [','] <natural number>}']"] [of <type name>]

<global variable declaration> ::= <variable name> [<array declaration>]['=" <constant>]

<global variables declaration> ::= <type name><global variable declaration> {[',"] <global variable declaration>}<end-of-line>
<global> ::= global '{" {<global variables declaration>} '}’

<public> ::= public

<private> ::= private

<extern> ::= extern '{" {(<function declaration> | <method declaration> | <operator declaration> | <property declaration>
)<end-of-line>} '}’

<command> ::= <define> | <func> | <method> | <text> | <operator function> | <property> | <include> | <type> | <global> | <extern> |
<import> | <public> | <private> | <ifdef>

<program> ::= <command> {<end-of-line><command>}

Page 61

How to launch Gentee

This section deals w ith the follow ing questions

Ways to run Gentee programs.

Compiler configuration and options.

Creating EXE files.

Integration w ith other programming languages. In particular, using gentee.dlIl.
Table of contents

Quick Launch

Launch from Command Line

Using #!' command

Compilation profiles

Page 62

Quick Launch

You may use any text editor to w rite and edit the source code of your Gentee program, w hich you should then save with the .g
extension. You w ill then be able to run it easily in Explorer or any file manager, by double-clicking it or pressing the Enter key. Files
w ith the .ge extension (compiled Gentee programs) are run in the same w ay. The .ge extension allow s you to run programs
faster, because they do not require additional compilation.

You w ill find some sample programs in the Gentee source files. Using a file manager or Explorer, open the directory to w hich you
installed Gentee (the default is C:\Program Files\Gentee), and select the Sam ples subdirectory to see a list of examples.

You can create shortcuts in Start->Programs or Desktop for frequently-used Gentee programs, to launch them more easily and
quickly. Use the extension .g or .ge to make the file executable.

Related links

Using #!' command
Compilation profiles

Page 63

Launch from Command Line

A program in the Gentee language is compiled and run w ith the console application gentee.exe. Command line options don't cover

all gentee features. So, use Compilation profiles for specifing advanced parameters of the compilation.

gentee.exe
switches
Compiler options.

-a

-c
-d

-m <macros>

-f
-n

-0 <GE or EXE
filename>

-p <profile
name>

-s

-t

-d

-wW

-z[d][n][u]

-x[d][g][a]lr]

-i <icon file>

-r <res file>

[switches] <Gentee file> [arguments]

You can use the follow ing options during compilation.

The compiler translates the bytecode to assembler. At this moment, it does NOT translate ALL bytecode to
assembler but this option can increase the speed of some programs in several times.

Only compilation. Do not run the program after the compilation.
Add the debug information into the byte-code.

Defining compilation macros. You can define the necessary compilation macros after -m. You should use '\’
before quotation marks. Macro definitions must be separated w ith a semicolon.
Example: -m "MODE=1;NAME=\"My Com pany, Inc\""\

Create a .ge file with byte code. It will be created in the same directory and w ill have the same name.
Ignore the command '#!" in the first string of the file. See Using #!' command.

Specify a name for the compiled file. In this case, next part should be the name of the output file. This feature is
used if you w ant the file w ith bytecode or exe file to have a name (or destination) different from the source file.
By default, the compiled byte-code is stored in the file with .ge extension.

Use profile parameters from the file gentee.ini. See Compilation profiles.

Do not display service message during compilation or running.

Automatically convert text to the 1Al encoding (DOS encoding) w hen displaying it on the console.
Include debug information into the byte-code.

Wait for pressing key at the end of the compilation.

Optimize a byte-code (-f or -x compatible)
-zd - Delete defines.

-zn - Delete names.

-zu - Delete no used objects.

-z equals -zdnu. Combine -zd, -zn and -zu.

Create executable EXE file.

-xd - Dynamic usage of gentee.dIl.

-xg - Make a gui application. In default a console application is created.

-xa - Specify this option if your program or its part is compiled w ith -a option.

-xr - Specify it if you w ant that the bytecode is translated to assembler each time w hen you run the program.
Don't use this parameter w ith -a option.

-xdgr - Combine -xd,-xr and -xg.

Link .ico file (-x compatible). Example -i "c:\data\myicon.ico"

Link .res file (-x compatible). Example -r "c:\data\myres.res"

Gentee file

This parameter is
arguments

All parameters after the name of the file being run are command line parameters that will be passed over to the program being run.

Examples

gentee.exe
gentee.exe
gentee.exe
gentee.exe
Related links

a required one and must define the name of the compilation file or the file w ith byte code to be executed.

-t myfile.g

-s myapp.g "command line argument" 10 20

-o "c:\temp\app.ge" -c myapp.ge "command line argument"
-p myprofile "c:\my programs\myfile.g"

Using #!' command
Compilation profiles

Page 64

Using #!" command'

Under Linux, '#!" in the first line is used to start the compiler. Under Window s, you can also use the first line in a file to start any
programs, including those used for compiling w ith the necessary parameters. If you click such a .g file or press Enter, the
specified command line will be executed. It allow s you to avoid using additional batch files (.bat) and specify compiling options
different from default options.

You can specify both absolute and relative paths to the program and the file you w ant to start. You can specify %1 as the full
name of the current file. If the path contains spaces, you should enclose it in double quotation marks.

Examples

#'gentee.exe -s hello.g
#'!'gentee.exe -t -f "%1"

#!"C:\My Application\my.bat" "%1"
#'ge2exe.exe "31"

Using profiles

You can specify profile parameters at the beginning of the source .g file. Parameters must be described from the first line and the
first character of the line must be . See names of parameters in Compilation profiles.

Example

#output = SEXEPATH%\gentee-x.exe
#norun = 1
fexe = 1 d g
#optimizer =
#wait = 3
#res = ..\..\res\exe\version.res

1

Page 65

Compilation profiles

Besides specifying compilation options directly w hen running Gentee program, you can store all necessary parameters in a
separate profile and you wiill only have to specify the name of this profile w hen you run the compiler. Profiles must be described in
the text file gentee.ini located in one directory with gentee.exe. The profile name is specified after the option -p. For example:
gentee.exe -p myoptions test.g. By default, the compilation profile named default is used w hen you run a Gentee program.

You can specify a compilation profile at the beginning of your .g source file. See Using '#!' command for more details.

asm =<0 1> If 1, the compiler translates the bytecode to assembler. At this moment, it does NOT translate ALL bytecode
to assembler but this option can increase the speed of some programs in several times.

silent =<0 1> If 1, do not display service messages during the compilation or launch.

charoem =<01> If 1, convert strings into the OEM (DOS) encoding w hen displaying them on the console.

debug = <0 1> If 1, the debug information w ill be included into the byte-code during the compilation.
gefile =<0 1> If 1, create a .ge file during the compilation.
norun = <0 1> If 1, do not run the program after the compilation.

numsign =<01> [f 0, ignore the first string w ith #! in the body of the program being run.

output = <.ge or You can specify the full path and name of the creating .ge or .exe file here.
.exe filename>

define = <macro = The parameter is used to define compilation macros. You can specify some define parameters:
value> define1,define2,define3....

include = <.g or .ge You can specify additional .g or .ge files that will be added at the beginning of the compilation. It is the same
file> as using the include command in a Gentee program. You can specify some include files w ith
include1,include2,include3....

libdir = <directory> The parameter allow s you to specify the search path for .g or .ge files included in the program. If the path is
specified, it is enough to specify only the file name. You can specify some search directories w ith
libdir1,libdir2,libdir3....

wait =<0 1..n> If 1, the compiler w ill w ait for pressing key at the end of the compilation. If you specify a number greater 1
then the compiler w ill be w ait <w ait> seconds and close the console w indow .

optimizer =<0 1 (d If 1, the byte-code wiill be optimized. You can specify the additional parameters d, n or u after 1 divided by a
n u)> space character.

d - Delete defines.

n - Delete names.

u - Delete no used objects.

For example: optimizer=1dnu

exe =<0 1 (d g ra)>If 1, the executable EXE file will be created. You can specify the additional parameters d g a r divided by a
space character.
d - Dynamic usage of gentee.dll.
g - Make a gui application. By default a console application is created.
a - Specify this option if your program or its part w as compiled w ith asm option.
r - Specify this parameter if you w ant that the bytecode is translated to assembler each time w hen you run
the program. Don't use this parameter if your program has been compiled w ith asm option.
For example: exe =1dgr

icon = <.ico file> You can specify additional .ico files for EXE file. It is possible to specify some icon files w ith
icon1,icon2,icon3....

res = <.res file> You can specify additional resource .res files for EXEfile. It is possible to specify some resource files w ith
res1,res2,res3....

args = Command line parameter for launching of the program . It is possible to specify some command line
<parameter> parameters w ith args1,args2,args3....

Additional features

You can use the follow ing predefined parameters.

%GNAM E% The name of the compiling Gentee file w ithout the extension.
%GPATHY% The full path to Gentee file.

%EXEPATH% The full path to the gentee.exe compiler.

Example

[default]

Page 66

charoem = 1
gefile = 0
libdir = %EXEPATH%\lib

libdirl = %EXEPATH%\..\lib\vis
include = %EXEPATH%\lib\stdlib.ge
[myoptions]

charoem = 1

output = c:\My Files\Programs\%GNAMES.ge
libdir = %EXEPATH%\1lib

include = %EXEPATH%\lib\stdlib.ge
includel = c:\mylibs\mylib.g

define = MODE = 1

definel = COMPANY = "My Company, Inc."

Page 67

Library Reference
Table of contents

Array

Array Of Strings
Array Of Unicode Strings
Buffer
Clipboard
Collection
COM/OLE
Console

CcsV

Date & Time
Dbf

Files

FTP

Gentee API
Hash

HTTP

INI File
Keyboard

Math

Memory

ODBC (SQL)
Process
Registry
Socket

Stack

String

String - Filename
String - Unicode
System

Thread

Tree

XML

Array.
Array of strings.
Array of unicode strings.

Binary data.

These functions are used to w ork w ith the Window s clipboard.

Collection.

Working w ith COM/OLE Object.

Console library.

Working w ith CSV data.

Functions for w orking w ith date and time.
This library is used to w ork w ith dbf files.
File system functions.

FTP protocol.

Gentee API functions for the using of gentee.dlIl.
Hash (Associative array).

HTTP protocol.

INI files.

These functions are used to emulate the w ork of the keyboard.

Mathematical functions.

Functions for memory management.

Data Access (SQL queries) Using ODBC.

Process, shell, arguments and environment functions.
Working w ith the Registry.

Sockets and common internet functions.

Stack.

Strings.

Filename strings.

Unicode strings.

System functions.

This library allow s you to create threads and w ork w ith them.
Tree object.

XML file processing.

Page 68

Array

Array. You can use variables of the arr type for w orking w ith arrays. The arr type is inherited from the buf type.

Operators
Methods

Operators
*arr

foreach var,arr
arr of type

arrf[i]

Methods
arr.clear
arr.cut
arr.del
arr.expand
arr.insert
arr.move

arr.sort

Get the count of items.
Foreach operator.
Specifying the type of items.

Getting [i] item of the array.

Clear an array.
Reducing an array.
Deleting item(s).

Add items to an array.
Insert elements.

Move an item.

Sorting an array.

Page 69

*arr
Get the count of items.

operator uint * (
arr left

)
Return value

Count of array items.

Related links
. Array

Page 70

foreach var,arr
Foreach operator. You can use foreach operator to look over items of the array.

foreach variable,array {...}
Related links
e Array

Page 71

arr of type
Specifying the type of items. You can specify of type w hen you describe arr variable. In default, the type of the items is uint.

method arr.oftype (

uint itype
)
Related links
e Array

Page 72

arr[i]
e method uint arr.index(_uint i)

e method uint arr.index(uint i, uint j)

e method uint arr.index(_uint i, uint j, uint k)

Getting [i] item of the array.

method uint arr.index (
uint 1

)

Return value

The [i] item of the array.

arrfi,j]

Getting [i,j] item of the array.

method uint arr.index (
uint 1,
uint j

)

Return value

The [i,j] item of the array.

arrfi,j,k]
Getting [i,j,k] item of the array.
method uint arr.index (
uint 1,
uint 7,
uint k

)
Return value

The [i,j,k] item of the array.

Related links
. Array

Page 73

arr.clear

Clear an array. The method removes all items from the array.

method arr arr.clear()
Return value

Returns the object w hich method has been called.

Related links
Array

Page 74

arr.cut
Reducing an array. All items exceeding the specified number will be deleted.

method arr.cut (
uint count

)

Parameters
count The number of items left in the array.
Related links

e Array

Page 75

arr.del
method arr.del(_uint num)

method arr arr.del(_uint from, uint count)

Deleting item(s). The method removes an item w ith the specified number.

method arr.del (
uint num
)
Parameters
num The number of item starting from 0.

arr.del
The method removes items from the array.
method arr arr.del (

uint from,

uint count

)

Parameters
from The number of the first item being deleted (from 0).
count The count of the items to be deleted.

Return value
Returns the object w hich method has been called.

Related links
Array

Page 76

arr.expand
Add items to an array.
method uint arr.expand (

uint count

)
Parameters

count The number of items being added.

Return value
The index of the first added item.

Related links
Array

Page 77

arr.insert
method arr.insert(uint id)

method uint arr.insert(_uint from, uint count)

Insert elements. The method inserts an element into the array at the specified index.

method arr.insert (
uint id
)
Parameters
id The index of the element needs to be inserted.

arr.insert
The method inserts elements into the array at the specified index.
method uint arr.insert (

uint from,

uint count

)

Parameters
from The index of the first inserted element starts at zero.
count The amount of elements are required to be inserted.

Return value
The index of the first inserted item.

Related links
Array

Page 78

arr.move
Move an item.

method arr.move (
uint from,

uint to
)
Parameters
from The current index of the item starting from zero.
to The new index of the item starting from zero.
Related links
Array

Page 79

arr.sort

Sorting an array. Sort array items according to the sorting function. The function must have tw o parameters containing pointers to
tw o compared items. It must return int less than, equal to or greater than zero if the left value is less than, equal to or greater than

the first one respectively.

method arr arr.sort (
uint sortfunc

)
Parameters
sortfunc

Return value

Returns the object w hich method has been called.

Related links
Array

Sorting function.

Page 80

Array Of Strings

Array of strings. You can use variables of the arrstr type for w orking w ith arrays of strings. The arrstr type is inherited from
the arr type. So, you can also use methods of the arr type.

Operators

Methods

Related Methods

Type
Operators
arrstr = type Convert types to the array of strings.
str = arrstr Convert an array of strings to a multi-line string.
arrstr += type Append types to an array of strings.
Methods
arrstr.insert Insert a string to an array of strings.
arrstr.load Add lines to the array from multi-line string.
arrstr.read Read a multi-line text file to array of strings.
arrstr.replace Replace substrings for the each item.
arrstr.setmultistr Create a multi-string buffer.
arrstr.sort Sort strings in the array.
arrstr.unite... Unite strings of the array.
arrstr.write Write an array of strings to a multi-line text file.

Related Methods

buf.getmultistr Convert a buffer to array of strings.

str.lines Convert a multi-line string to an array of strings.
str.split Splitting a string.

Type

arrstr The main structure of array of strings.

Page 81

arrstr = type
e operator arrstr =(_arrstr dest, str src)

e operator arrstr =(arrstr dest, arrstr src)

e operator arrstr =(_arrstr left, collection right)

Convert types to the array of strings. Convert a multi-line string to an array of strings.

operator arrstr = (
arrstr dest,
str src

)

Return value

The array of strings.

arrstr = arrstr
Copy one array of strings to another array of strings.
operator arrstr = (

arrstr dest,

arrstr src

)

arrstr = collection
Copy a collection of strings to the array of strings.
operator arrstr = (

arrstr left,

collection right

)
Related links

e Array Of Strings

Page 82

str = arrstr
Convert an array of strings to a multi-line string.
operator str = (

str dest,

arrstr src

)
Return value

The result string.

Related links
e Array Of Strings

Page 83

arrstr += type

e operator arrstr +=(arrstr dest, str new str)

e operator arrstr +=(arrstr dest, arrstr src)

Append types to an array of strings. The operator appends a string at the end of the array of strings.
operator arrstr += (

arrstr dest,

str newstr

)
Return value

Returns the object w hich method has been called.

arrstr += arrstr
The operator appends one array of strings to another array of strings.
operator arrstr += (

arrstr dest,

arrstr src

)
Related links

e Array Of Strings

Page 84

arrstr.insert

Insert a string to an array of strings.

method arrstr arrstr.insert (
uint index,
str newstr

)

Parameters
index The index of the item w here the string w ill be inserted.
newstr The inserting string.

Return value
Returns the object w hich method has been called.

Related links
Array Of Strings

Page 85

arrstr.load
method arrstr arrstr.load(str input, uint flag)

method arrstr arrstr.loadtrim(_str input)

Add lines to the array from multi-line string.

method arrstr arrstr.load (
str input,
uint flag
)
Parameters
input The input string.
flag Flags.

$ASTR_APPEND Adding strings. Otherw ise, the array is cleared before loading.

$ASTR_TRIM Delete characters <= space on the left and on the right.

Return value

Returns the object w hich method has been called..

arrstr.loadtrim
Add lines to the array from multi-line string w ith trimming.

method arrstr arrstr.loadtrim (
str Iinput

)

Parameters
input The input string.
Related links

Array Of Strings

Page 86

arrstr.read
Read a multi-line text file to array of strings.

method uint arrstr.read (
str filename

)
Parameters
filename The filename.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Array Of Strings

Page 87

arrstr.replace

Replace substrings for the each item. The method looks for strings from one array and replace to strings of another array for the
each string of the array.
method arrstr arrstr.replace (

arrstr aold,

arrstr anew,

uint flags
)
Parameters
aold The strings to be replaced.
anew The new strings.
il ags Flags.
$QS_IGNCASE Case-insensitive search.
$QS_WORD Search the w hole w ord only.
$QS_BEGINWORD Search words w hich start w ith the specified pattern.

Return value

Returns the object w hich method has been called.

Related links
e Array Of Strings

Page 88

arrstr.setmultistr
e method buf arrstr.setmultistr(buf dest)

e method buf arrstr.setmultistr <result>

Create a multi-string buffer. The method w rites strings to a multi-string buffer w here strings are divided by zero character.
method buf arrstr.setmultistr (
buf dest

)
Parameters
dest The result buffer.

Return value

The result buffer.

The method creates a multi-string buffer w here strings are divided by zero character.

method buf arrstr.setmultistr <result>
Return value
The new result buffer.
Related links
e Array Of Strings

Page 89

arrstr.sort
Sort strings in the array.

method arrstr.sort (
uint mode

)

Parameters
mode Specify 1 to sort with ignore-case sensitive. In default, specify 0.
Related links

e Array Of Strings

Page 90

arrstr.unite...
e method str arrstr.unite(str dest, str separ)
e method str arrstr.unite(str dest)
e method str arrstr.unitelines(str dest)

Unite strings of the array. The method unites all items of the array to a string w ith the specified separator string.

method str arrstr.unite (
str dest,
str separ

)

Parameters
dest The result string.
separ A separator of the strings.

Return value

The result string.

arrstr.unite
The method unites all items of the array to a string.
method str arrstr.unite (

str dest

)
Parameters
dest The result string.

arrstr.unitelines
The method unites items of the array to a multi-line string. It inserts new -line characters betw een the each string of the array.

method str arrstr.unitelines (
str dest

)
Parameters
dest The result string.
Related links
° Array Of Strings

Page 91

arrstr.write

Write an array of strings to a multi-line text file.

method uint arrstr.write (
str filename

)
Parameters
filename
Return value
The size of written data.
Related links

Array Of Strings

The filename.

Page 92

arrstr
The main structure of array of strings.

type arrstr <inherit=arr index=str>
{

}

Related links

e Array Of Strings

Page 93

Array Of Unicode Strings

Array of unicode strings. You can use variables of the arrustr type for w orking w ith arrays of unicode strings. The arrustr type

is inherited from the arr type. So, you can also use methods of the arr type.

Operators
Methods

Related Methods
Type

Operators
arrustr = type
ustr = arrustr

arrustr += type

Methods
arrustr.insert
arrustr.load
arrustr.read
arrustr.setmultiustr
arrustr.sort
arrustr.unite...

arrustr.write

Related Methods

buf.getmultiustr

Convert types to the array of unicode strings.
Convert an array of unicode strings to a multi-line unicode string.

Append types to an array of unicode strings.

Insert a unicode string to an array of unicode strings.

Add lines to the array of unicode strings from multi-line unicode string.

Read a multi-line text file to array of unicode strings.
Create a multi-string buffer.

Sort unicode strings in the array.

Unite unicode strings of the array.

Write an array of unicode strings to a multi-line text file.

Convert a buffer to array of unicode strings.

ustr.lines Convert a multi-line unicode string to an array of unicode strings.
ustr.split Splitting a unicode string.

Type

arrustr The main structure of array of unicode strings.

Page 94

arrustr = type
operator arrustr =(_arrustr dest, ustr src)

operator arrustr =(_arrustr dest, arrustr src)

operator arrustr =(_arrustr left, collection right)

Convert types to the array of unicode strings. Convert a multi-line unicode string to an array of unicode strings.

operator arrustr = (
arrustr dest,
ustr src

)

Return value

The array of unicode strings.

arrustr = arrustr
Copy one array of unicode strings to another array of unicode strings.
operator arrustr = (

arrustr dest,

arrustr src

)

arrustr = collection

Copy a collection of strings (simple or unicode) to the array of unicode strings.

operator arrustr = (
arrustr left,
collection right
)
Related links
Array Of Unicode Strings

Page 95

ustr = arrustr
Convert an array of unicode strings to a multi-line unicode string.
operator ustr = (

ustr dest,

arrustr src

)
Return value

The result string.

Related links
e Array Of Unicode Strings

Page 96

arrustr += type

. operator arrustr +=(arrustr dest, ustr new str)

. operator arrustr +=(arrustr dest, arrustr src)

Append types to an array of unicode strings. The operator appends a unicode string at the end of the array of unicode strings.

operator arrustr += (
arrustr dest,
ustr newstr

)

Return value

Returns the object w hich method has been called.

arrustr += arrustr

The operator appends one array of unicode strings to another array of unicode strings.

operator arrustr += (
arrustr dest,
arrustr src

)
Related links
e Array Of Unicode Strings

Page 97

arrustr.insert
Insert a unicode string to an array of unicode strings.
method arrustr arrustr.insert (
uint index,
ustr newstr

)

Parameters
index The index of the item w here the string w ill be inserted.
newstr The inserting unicode string.

Return value

Returns the object w hich method has been called.

Related links
Array Of Unicode Strings

Page 98

arrustr.load
method arrustr arrustr.load(_ustr input, uint flag)

method arrustr arrustr.loadtrim(_ustr input)

Add lines to the array of unicode strings from multi-line unicode string.

method arrustr arrustr.load (
ustr input,

uint flag
)
Parameters
input The input unicode string.
flag Flags.
$ASTR_APPEND Adding strings. Otherw ise, the array is cleared before loading.
$ASTR_TRIM Delete characters <= space on the left and on the right.

Return value

Returns the object w hich method has been called..

arrustr.loadtrim
Add lines to the array of unicode strings from multi-line unicode string w ith trimming.

method arrustr arrustr.loadtrim (
ustr Iinput

)

Parameters
input The input unicode string.
Related links

Array Of Unicode Strings

Page 99

arrustr.read
Read a multi-line text file to array of unicode strings.
method uint arrustr.read (

str filename

)
Parameters
filename The filename.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Array Of Unicode Strings

Page 100

arrustr.setmultiustr

Create a multi-string buffer. The method w rites unicode strings to a buffer.

method buf arrustr.setmultiustr (
buf dest

)
Parameters
dest The result buffer.

Return value

The result buffer.

Related links
Array Of Unicode Strings

Page 101

arrustr.sort
Sort unicode strings in the array.

method arrustr.sort (
uint mode

)

Parameters
mode Specify 1 to sort with ignore-case sensitive. In default, specify 0.
Related links

e Array Of Unicode Strings

Page 102

arrustr.unite...
e method ustr arrustr.unite(ustr dest, ustr separ)

e method ustr arrustr.unitelines(ustr dest)

Unite unicode strings of the array. The method unites all items of the array to a unicode string w ith the specified separator string.

method ustr arrustr.unite (
ustr dest,
ustr separ

)

Parameters
dest The result unicode string.
separ A separator of the strings.

Return value

The result unicode string.

arrustr.unitelines
The method unites items of the array to a multi-line unicode string. It inserts new -line characters betw een the each string of the
array.

method ustr arrustr.unitelines (
ustr dest
)

Parameters
dest The result unicode string.
Related links

e Array Of Unicode Strings

Page 103

arrustr.write
Write an array of unicode strings to a multi-line text file.
method uint arrustr.write (

str filename

)

Parameters

filename The filename.
Return value

The size of written data.

Related links
e Array Of Unicode Strings

Page 104

arrustr
The main structure of array of unicode strings.

type arrustr <inherit=arr index=ustr>
{

}

Related links

e Array Of Unicode Strings

Page 105

Buffer

Binary data. It is possible to use variables of the buf type for w orking w ith memory. Use this type if you w ant to store and manage

the binary data.

Operators
Methods

Operators
* buf
buf[i]

buf = buf
buf + buf
buf += type
buf == buf

buf(type)
Methods

buf.align
buf.append
buf.clear
buf.copy
buf.crc

buf.del
buf.expand
buf.free
buf.findch
buf.getmultistr
buf.getmultiustr
buf.insert
buf.ptr
buf.read
buf.replace
buf.reserve
buf.write

buf.writeappend

Get the size of the memory being used.
Getting byte <i> from the buffer.

Copying data from one buffer into another.

Putting tw o buffers together and creating a resulting buffer.

Appending types to the buffer.
Comparison operation.

Converting types to buf.

Data alignment.

Data addition.

Clear data in the object.
Copying.

Calculating the checksum.
Data deletion.

Expansion.

Memory deallocation.

Find a byte in a binary data.

Convert a buffer to array of strings.

Convert a buffer to array of unicode strings.

Data insertion.

Get the pointer to memory.
Reading from a file.
Replacing data.

Memory reservation.
Writing to a file.

Appending data to a file.

Page 106

* buf

Get the size of the memory being used.

operator uint * (
buf left

)

Return value

The size of the used memory.

Related links
Buffer

Page 107

buf[i]

Getting byte <i> from the buffer.

method uint buf.index (
uint 1

)

Return value

The value of byte i of the memory data.

Related links
Buffer

Page 108

buf = buf
Copying data from one buffer into another.

operator buf = (
buf left,
buf right

)

Return value

The result buffer.

Related links

e Buffer

Page 109

buf + buf

Putting tw o buffers together and creating a resulting buffer.

operator buf +<result> (
buf left,
buf right

)

Return value

The new result buffer.

Related links
Buffer

Page 110

buf += type
operator buf +=(buf left, buf right)
operator buf +=(buf left, ubyte right)
operator buf +=(_buf left, uint right)
operator buf +=(_buf left, ushort right)
operator buf +=(buf left, ulong right)

Appending types to the buffer. Append buf to buf => buf += buf.

operator buf += (
buf left,
buf right

)

Return value

The result buffer.

buf += ubyte
Append ubyte to buf => buf += ubyte.
operator buf += (
buf left,
ubyte right
)

buf += uint
Append uint to buf => buf += uint.
operator buf += (
buf left,
uint right
)

buf += ushort
Append ushort to buf => buf += ushort.
operator buf += (
buf left,
ushort right
)

buf += ulong
Append ulong to buf => buf += ulong.

operator buf += (
buf left,
ulong right
)
Related links
Buffer

Page 111

buf == buf
e operator uint ==(buf left, buf right)
e operator uint !=(buf left, buf right)

Comparison operation.
operator uint == (
buf left,
buf right
)
Return value

Returns 1 if the buffers are equal. Otherw ise, it returns 0.

buf != buf
Comparison operation.
operator uint !'= (
buf left,
buf right

)
Return value

Returns 0 if the buffers are equal. Otherw ise, it returns 1.

Related links

e Buffer

Page 112

buf(type)
Converting types to buf. Convert uint to buf => buf(uint).

method buf uint.buf<result>
Return value

The result buffer.

Related links

e Buffer

Page 113

buf.align
Data alignment. The method aligns the binary data and appends zeros if it is required.

method buf buf.align
Return value

Returns the object w hich method has been called.

Related links

e Buffer

Page 114

buf.append
Data addition. The method adds data to the object.
method buf buf.append (

uint ptr,

uint size

)

Parameters
ptr The pointer to the data to be added.
size The size of the data being added.

Return value

Returns the object w hich method has been called.

Related links
Buffer

Page 115

buf.clear
Clear data in the object. This method sets the size of the binary data to zero.

method buf buf.clear ()
Return value

Returns the object w hich method has been called.

Related links

e Buffer

Page 116

buf.copy
Copying. The method copies a binary data into the object.
method buf buf.copy (

uint ptr,

uint size

)

Parameters
ptr The pointer to the data being copied.
size The size of the data being copied.

Return value

Returns the object w hich method has been called.

Related links
Buffer

Page 117

buf.crc
Calculating the checksum. The method calculates the checksum of data for an object of the buf.

method uint buf.crc
Return value

The checksum is returned.

Related links

e Buffer

Page 118

buf.del

Data deletion. The method deletes part of the buffer.
method buf buf.del (

uint offset,

uint size

)

Parameters
offset The offset of the data being deleted.
size The size of the data being deleted.

Return value

Returns the object w hich method has been called.

Related links
Buffer

Page 119

buf.expand
Expansion. The method increases the size of memory allocated for the object.
method buf buf.expand (
uint size
)

Parameters
size The requested additional size of memory. It is an additional size to be reserved in the buffer.

Return value
Returns the object w hich method has been called.

Related links

e Buffer

Page 120

buf.free
Memory deallocation. The method deallocates memory allocated for the object and destroys all data.

method buf buf.free()
Return value

Returns the object w hich method has been called.

Related links

e Buffer

Page 121

buf.findch

Find a byte in a binary data.

method uint buf.findch (
uint offset,

uint ch
)
Parameters
offset The offset to start searching from.
ch A unsigned byte to be searched.

Return value
The offset of the byte if it is found. If the byte is not found, the size of the buffer is returned.

Related links

° Buffer

Page 122

buf.getmultistr
method arrstr buf.getmultistr(_arrstr ret, arr offset)
method arrstr buf.getmultistr(_ arrstr ret)

Convert a buffer to array of strings. Load the array of string from multi-string buffer w here strings are divided by zero character.

method arrstr buf.getmultistr (
arrstr ret,
arr offset

)

Parameters
ret The result array of strings.
offset The array for getting offsets of strings in the buffer. It can be 0->>arr.

Return value

The result array of strings.

buf.getmultistr

Load the array of string from multi-string buffer w here strings are divided by zero character.

method arrstr buf.getmultistr (
arrstr ret

)

Parameters
ret The result array of strings.
Related links

Buffer

Page 123

buf.getmultiustr

Convert a buffer to array of unicode strings. Load the array of string from multi-string buffer w here strings are divided by zero
character.

method arrustr buf.getmultiustr (
arrustr ret

)
Parameters
ret The result array of unicode strings.

Return value
The result array of unicode strings.

Related links

e Buffer

Page 124

buf.insert
e method buf buf.insert(_uint offset, buf value)

e method buf buf.insert(uint offset, uint ptr, uint size)

Data insertion. The method inserts one buf object into another.
method buf buf.insert (

uint offset,

buf value

)
Parameters
offset The offset w here data will be inserted. If the offset is greater than the size, data is added to the end to the buffer.

value The buf object w ith the data to be inserted.
Return value

Returns the object w hich method has been called.

buf.insert
The method inserts one memory data into the buffer.

method buf buf.insert (
uint offset,
uint ptf,
uint size

)

Parameters
offset The offset where data will be inserted. If the offset is greater than the size, data is added to the end to the buffer.
ptr The pointer to the memory data to be inserted.
size The size of the data to be inserted.
Related links
e Buffer

Page 125

buf.ptr

Get the pointer to memory.

method buf buf.ptr()
Return value

The pointer to the allocated memory of the binary data.

Related links
Buffer

Page 126

buf.read

Reading from a file. The method reads data from the file.

method uint buf.read (
str filename

)
Parameters
filename Filename.

Return value

The size of the read data.

Related links

e Buffer

Page 127

buf.replace

Replacing data. The method replaces binary data in an object.

method buf buf.replace (
uint offset,
uint size,
buf value

)

Parameters

offset The offset of the data being replaced.
size The size of the data being replaced.
value The buf object with new data.

Return value

Returns the object w hich method has been called.

Related links

e Buffer

Page 128

buf.reserve
Memory reservation. The method increases the size of memory allocated for the object.
method buf buf.reserve (
uint size
)

Parameters

size The summary requested size of memory. If it is less than the current size, nothing happens. If the size is increased, the
current data is saved.

Return value

Returns the object w hich method has been called.
Related links

e Buffer

Page 129

buf.write

Writing to a file. The method w rites data to the file.

method uint buf.write (
str filename

)
Parameters

filename
Return value
The size of the written data.

Related links
Buffer

Filename.

Page 130

buf.writeappend
Appending data to a file. The method appends data to the specified file.

method uint buf.writeappend (
str filename

)
Parameters
filename Filename.

Return value

The size of the written data.

Related links

e Buffer

Page 131

Clipboard

These functions are used to w ork w ith the Window s clipboard. For using this library, it is required to specify the file clipboard.g

(from lib\clipboard subfolder) w ith include command.

include $"...\gentee\lib\clipboard\clipboard.g"
Methods

clipboard_gettext Gets a string from the clipboard.

clipboard_em pty Clear the clipboard.

clipboard_settext Copies a string into the clipboard.

Methods

buf.getclip Copy the clipboard data to buf variable.

buf.setclip Copy the data of the buf variable to the clipboard.

str.getclip Copy the clipboard data to str variable if the clipboard contains text data.

str.setclip Copy a string to the clipboard.

ustr.getclip

ustr.setclip

Copy the clipboard data to unicode str variable if the clipboard contains unicode text data.

Copy a unicode string to the clipboard.

Page 132

clipboard_gettext

Gets a string from the clipboard.

{
Parameters

data Result string.

Return value
Returns the parameter data.

Related links
Clipboard

Page 133

clipboard_empty
Clear the clipboard.

func uint clipboard empty
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Clipboard

Page 134

clipboard_settext
Copies a string into the clipboard.
func uint clipboard settext (

str data

)
Parameters
data The string for copying into the clipboard.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
° Clipboard

Page 135

buf.getclip
Copy the clipboard data to buf variable.

method uint buf.getclip (
uint cftype
)
Parameters
cftype The type of the clipboard data.
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.
Related links
e Clipboard

Page 136

buf.setclip
Copy the data of the buf variable to the clipboard.

method uint buf.setclip (
uint cftype locale
)

Parameters
cftype The type of the buf data.
locale Locale identifier. It can be 0.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
. Clipboard

Page 137

str.getclip
Copy the clipboard data to str variable if the clipboard contains text data.

method uint str.getclip()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Clipboard

Page 138

str.setclip
Copy a string to the clipboard.

method uint str.setclip()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Clipboard

Page 139

ustr.getclip

Copy the clipboard data to unicode str variable if the clipboard contains unicode text data.

method uint ustr.getclip()
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Clipboard

Page 140

ustr.setclip

Copy a unicode string to the clipboard.

method uint ustr.setclip()
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Clipboard

Page 141

Collection

Collection. You can use variables of the collection type for w orking w ith collections. Collection is an object w hich can contains
objects of different types. The collection type is inherited from the buf type. So, you can also use methods of the buf type.

Operators
Methods

Types
Operators
* collection
collection[i]
collection = collection
collection += collection
collection + collection

foreach var,collection

Methods
collection.append
collection.clear
collection.gettype

collection.ptr

Types

Gets the amount of elements in the collection.
Gets a value of a collection element.
Collection copying.

Appends elements of a collection to another collection.

Putting tw o collections together and creating a resulting collection.

Foreach operator.

Append an object or a numeric value to the collection.
Delete all items from the collection.
Gets an element type of a collection.

Gets a pointer to a collection element.

colitem The structure is used in foreach operator.

Page 142

* collection

Gets the amount of elements in the collection.

operator uint * (
collection left

)

Return value

The count of the collection items.
Related links

Collection

Page 143

collection[i]
Gets a value of a collection element. Don't use if the collection contains double, ulong or long types.

method uint collection.index (
uint ind

)

Return value

A value of the collection element.

Related links

. Collection

Page 144

collection = collection

Collection copying.

operator collection = (
collection left,
collection right

)

Related links

e Collection

Page 145

collection += collection
Appends elements of a collection to another collection.
operator collection += (

collection left,
collection right
)
Related links

e Collection

Page 146

collection + collection

Putting tw o collections together and creating a resulting collection.

operator collection +<result> (
collection left,

collection right

)
Return value

The new result collection.

Related links

° Collection

Page 147

foreach var,collection

Foreach operator. You can use foreach operator to look over items of the collection. The variable var has colitem type.

foreach variable,collection {...}
Related links

e Collection

Page 148

collection.append
Append an object or a numeric value to the collection.
method uint collection.append (
uint value,
uint itype
)

Parameters
value The value of the 32-bit number or the pointer to 64-bit number or the ponter to any other object.

itype The type of the appending value.
Return value

An index of the appended item.

Related links

° Collection

Page 149

collection.clear
Delete all items from the collection.

method collection collection.clear ()
Return value
Returns the object w hich method has been called.

Related links

Collection

Page 150

collection.gettype
Gets an element type of a collection.

method uint collection.gettype (
uint ind

)

Parameters

ind Element index starts at zero.

Return value

An element type of a collection or zero on error.

Related links

e Collection

Page 151

collection.ptr

Gets a pointer to a collection element.

method uint collection.ptr (
uint ind

)

Parameters

ind Element index starts at zero.

Return value

A pointer to a collection element, or zero on error.

Related links

Collection

Page 152

colitem
The structure is used in foreach operator. The variable of the foreach operator has this type.

type colitem

{

uint oftype

uint val

uint hival

uint ptr
}
Members
oftype The type of the item.
val The value of the item.
hival The hi-uint of the value. It is used if the value is 64-bit.
ptr The pointer to the value.
Related links

e Collection

Page 153

COM/OLE

Working w ith COM/OLE Object. The COM library is applied for w orking w ith the COM/OLE objects, the IDis patch interface and
maintains late binding operations. For using this library, it is required to specify the file olecom.g (from lib\olecom subfolder) w ith

include command.

include : S".
Operators
Methods
VARIANT Methods

..\gentee\lib\olecom\olecom.g"

COM/OLE description A brief description of COM/OLE library.
VARIANT VARIANT type.
Operators

type = VARIANT
VARIANT = type

type(VARIANT)
Methods

oleobj.createobj
oleobj.getres
oleobj.iserr

oleobj.release

Assign operation.
Assign operation.

Conversion.

The method creates a new COM object.

Result of the last operation.

Enables to define w hether or not an error occurs w hile w orking w ith a COM object.

Releasing the COM object.

VARIANT Methods

variant.arrcreate
variant.arrfromg
variant.arrgetptr
variant.clear
variant.ismissing
variant.isnull

variant.setmissing

Creating the SafeArray array.

Assigning a value to an element of the SafeArray array.

Obtaining a pointer to an element of the SafeArray array.

Clears the variable contents, the storage area is released if necessary.
Checks if the variant is "missing" (optional) parameter of the method.
Enables to define w hether or not a variable is NULL.

Sets the "missing" variant.

Page 154

COM/OLE description

A brief description of COM/OLE library. This library also contains the support of the VARIANT type, used for data transmitting

from/to COM objects. Variables of the oleobj type are used for w orking w ith the COM objects; furthermore, each variable of this
type has one appropriate COM object. A COM objects method is called w ith the help of the ~ late binding operation. There are tw o

w ays of binding a COM object w ith a variable , as follow s:

1. The oleobj.createobj method is used for creating a new COM object:

oleob]j excapp
excapp.createobj ("Excel.Application™, "")

2. Binding a variable w ith the existing COM object (child) is returned by another COM object method call:

oleobj workbooks
workbooks = excapp~WorkBooks

The oleobj object can maintain the follow ing kinds of late binding:

elementary method call excapp~Quit, w ith/w ithout parameters;

set value excapp~Cells(3,2) ="Hello World!";

get value vis = uint(excapp~Visible);

call chain excapp~WorkBooks~Add, equals the follow ing expressions
oleobj workbooks
workbooks = excapp~WorkBooks
workbooks~Add

The method call can return only the VARIANT type, and the appropriate assignment operators and type cast operators are used to
convert data to basic Gentee types. Parameters of the COM objects methods call as w ell as the assigned values are automatically
converted to the appropriate VARIANT types. The follow ing Gentee types can be used - uint, int, ulong, long, float, double,

str, VARIANT.

Use the oleobj.release method in order to release the COM object; otherw ise, the COM object is released w hen the variable is

deleted; also the object is released w hen the variable is bound w ith another COM object. Have a look at the example of using the

COM object

include : $"...\olecom.g"
func ole example

{
oleob]j excapp
excapp.createobj ("Excel.Application™, "")
excapp.flgs = SFOLEOBJ INT
excapp~Visible = 1
excapp~WorkBooks~Add
excapp~Cells(3, 2) = "Hello World!"

}

The oleobj object has properties, as follow s:

uint flgs are flags. Flags value can be set or obtained; the property can contain the $FOLEOBJ_INT flag, i.e. w hen transmitting

data to the COM object the unsigned Gentee type of uint is automatically converted to the signed type of VARIANT(VT_I4)

uint errfunc is an error handling function. A function address can be assigned to this property, so using the COM object this

function will be called as long as an error occurs; furthermore, this function must have a parameter of the uint type, that
contains an error code.

All child objects automatically inherit the flgs property as w ell as the errfunc property.

Related links
COM/OLE

Page 155

VARIANT

VARIANT type. VARIANT is a universal type that is used for storing various data and it enables different programs to exchange
data properly. This type represents a structure consisted of tw o main fields: the first field is a type of the stored value, the second

field is the stored value or the pointer to a storage area. The VARIANT type is defined as follow s:

type VARIANT ({
ushort vt
ushort wReservedl
ushort wReserved?2
ushort wReserved3
ulong wval

}

vt is a type code of the contained value (type constants VT_*: $VT_UI4, $VT_I4, $VT_BSTR ...);
val is a field used for storing values

The library provides only some of the operations of the VARIANT type, how ever, you can use the fields of the given structure. The

example illustrates creation of the VARIANT(VT_BOOL) variable:
VARIANT bool

bool.clear ()
bool.vt = $VT BOOL
(&bool.val)->uint = Oxffff// Oxffff - VARIANT TRUE

This example show s VARIANT operations
uint val
str res

oleobj ActWorkSheet
VARIANT vval

vval = int(100) //VARIANT (VT _I4) is being created
excapp~Cells(1,1) = vval //equals excapp~Cells(1l,1) = 100

vval = "Test string" //VARIANT (VT _BSTR) is being created
excapp~Cells(2,1) = vval //equals excapp~Cells(l,1) = "Test string"

val = uint(excapp~Cells(l,1)~Value) //VARIANT(VT I4) is converted to uint
excapp~Cells (2,1)~Value //VARIANT (VT _BSTR) is converted to str
ActWorkSheet = excapp~ActiveWorkSheet //VARIANT (VT DISPATCH) is converted

res

to oleobj
Related links
COM/OLE

Page 156

type = VARIANT
e operator str = (_str left, VARIANT right)
e operator oleobj = (oleaobj left, VARIANT right)

Assign operation. str = VARIANT(VT_BSTR).

operator str = (
str left,
VARIANT right

)

Return value

The result string.

oleobj = VARIANT
Assign operation. oleobj = VARIANT(VT_DISPATCH).

operator oleobj = (
oleobj left,
VARIANT right

)

Return value

The result ole obj.

Related links
e COM/OLE

Page 157

VARIANT = type
operator VARIANT = (VARIANT left, uint right)
operator VARIANT = (VARIANT left, int right)
operator VARIANT = (VARIANT left, float right)
operator VARIANT = (VARIANT left, double right)
operator VARIANT = (VARIANT left, long right)
operator VARIANT = (VARIANT left, ulong right)
operator VARIANT = (VARIANT left, str right)
operator VARIANT = (VARIANT left, VARIANT right)

Assign operation. VARIANT = uint.

operator VARIANT = (
VARIANT left,
uint right

)
Return value

VARIANT(VT _UI4).

VARIANT = int
Assign operation: VARIANT = int.
operator VARIANT = (
VARIANT left,
int right
)
Return value

VARIANT(VT_14).

VARIANT = float
Assign operation: VARIANT = float.
operator VARIANT = (
VARIANT left,
float right

)
Return value

VARIANT(VT_R4).

VARIANT = double
Assign operation: VARIANT = double.
operator VARIANT = (
VARIANT left,
double right

)
Return value

VARIANT(VT_R8).

VARIANT = long
Assign operation: VARIANT = long.
operator VARIANT = (
VARIANT left,
long right
)
Return value

VARIANT(VT_I8).

VARIANT = ulong
Assign operation: VARIANT = ulong.

operator VARIANT = (

Page 158

VARIANT left,
ulong right

)

Return value

VARIANT(VT_UI8).

VARIANT = str

Assign operation: VARIANT = str.

operator VARIANT
VARIANT left,
str right

)

Return value

VARIANT(VT_BSTR).

(

VARIANT = VARIANT

Assign operation: VARIANT = VARIANT.

operator VARIANT
VARIANT left,
VARIANT right

)

Return value

VARIANT.

Related links
COM/OLE

(

Page 159

type(VARIANT)
method str VARIANT.str <result>
method ulong VARIANT.ulong
method long VARIANT.long
method uint VARIANT.uint
method int VARIANT.int
method float VARIANT .float
method double VARIANT.double

Conversion. str(VARIANT).

method str VARIANT.str <result>

Return value

The result str value.

VARIANT.ulong
Conversion: ulong(VARIANT).

method ulong VARIANT.ulong
Return value

The result ulong value.

VARIANT.long
Conversion: long(VARIANT).

method long VARIANT.long
Return value

The result long value.

VARIANT.uint
Conversion: uint(VARIANT).

method uint VARIANT.uint
Return value

The result uint value.

VARIANT.int
Conversion: int(VARIANT).

method int VARIANT.int
Return value

The result int value.

VARIANT float
Conversion: float(VARIANT).

method float VARIANT.float
Return value

The result float value.

VARIANT.double
Conversion: double (VARIANT).

method double VARIANT.double
Return value
The result double value.

Related links
COM/OLE

Page 160

oleobj.createobj
The method creates a new COM object. Example:

oleob]j excapp
excapp.createobj ("Excel.Application™, "")
//1is equal to excapp.createobj("{00024500-0000-0000-C000-0000000000461}", ™")
|
excapp.flgs = $FOLEOBJ INT
excapp~Visible = 1
method uint oleobj.createobj (
str name,
str mashine
)
Parameters
name An object name, or the string representation of an object identifier - "{...}".
mashine A computer name w here the required object is created; if the current string is empty, the object is created in the
current computer.
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e COM/OLE

Page 161

oleobj.getres
Result of the last operation. This method is applied for getting an error code or a w arning; the code is the C type of HRESULT.

method uint oleobj.getres|()
Return value

Returns the HRESULT code of the last COM object operation.

Related links
e COM/OLE

Page 162

oleobj.iserr
Enables to define w hether or not an error occurs w hile w orking w ith a COM object.

method uint oleobj.iserr()
Return value

Returns the HRESULT code of the last COM object operation.

Related links
e COM/OLE

Page 163

oleobj.release
Releasing the COM object. The method deletes the bond betw een the variable and the COM object and releases the COM object.

method oleobj.release ()
Related links
e COM/OLE

Page 164

variant.arrcreate

Creating the SafeArray array. This method creates the Safe Array array in the variable of the VARIANT type. VARIANT is an
element of the array. Values can be assigned to the array elements using the variant.arrfromg method. An element of the array
can be obtained w ith the help of the variant.arrgetptr method.

The example uses SafeArray

VARIANT v
//An array with 3 lines and 2 columns is being created
v.arrcreate(%{3,0,2,0})

v.arrfromg(%${0,0, 0.1234f})
v.arrfromg(%${0,1, int(100)})
v.arrfromg(%${2,1, "Test" })

//The array is being transmitted to the COM object
excapp~Range (excapp~Cells(1, 1), excapp~Cells(3, 2)) = v

SafeArray allow s you to group data, that makes data exchange w ith the COM object faster.
method uint VARIANT.arrcreate (

collection bounds

)
Parameters

bounds The collection that contains array parameters. Tw o numbers are specified for each array dimension: the first number
- an element quantity, the second number - a sequence number of the first element in the dimension.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e COM/OLE

Page 165

variant.arrfromg
Assigning a value to an element of the SafeArray array. Example
v.arrfromg(${0,0, 0.1234f})
v.arrfromg(%${0,1, int(100)})
v.arrfromg(${2,1, "Test" })
method uint VARIANT.arrfromg (
collection item
)
Parameters
item The collection that contains "coordinates" of an element; the last element of the collection - the assigned value.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
° COM/OLE

Page 166

variant.arrgetptr
Obtaining a pointer to an element of the SafeArray array.

method uint VARIANT.arrgetptr (
collection item
)
Parameters
item The collection that contains "coordinates" of an element.

Return value

The method returns address of an array element, if error occurs it returns zero.

Related links
COM/OLE

Page 167

variant.clear

Clears the variable contents, the storage area is released if necessary. The VARIANT type is equal to VT_EMPTY. This method is
automatically called before a new value has been set .

method VARIANT.clear ()
Related links
e COM/OLE

Page 168

variant.ismissing
Checks if the variant is "missing" (optional) parameter of the method.

method uint VARIANT.ismissing()
Return value

The method returns 1, if the VARIANT variable is "missing".

Related links
e COM/OLE

Page 169

variant.isnull

Enables to define w hether or not a variable is NULL. This method enables you to define w hether or not a variable is NULL - the
VARIANT(VT_NULL) type.

method uint VARIANT.isnull ()
Return value

The method returns 1, if the VARIANT variable is of the VT_NULL type, otherw ise, it returns zero.

Related links
° COM/OLE

Page 170

variant.setmissing
Sets the "missing" variant. The method sets the variant variable as "missing" (optional) parameter.

method VARIANT.setmissing()
Related links
e COM/OLE

Page 171

Console

Console library. Functions for w orking w ith the console.

congetch Displaying text and w aiting for a keystroke.
congetstr Getting a string after text is displayed.

conread Get a string entered by the user.

conrequest Displaying a multiple choice request on the console.
conyesno Displaying a question on the console.

Page 172

congetch
Displaying text and w aiting for a keystroke.
func uint congetch (

str output

)
Parameters
output Message text.

Return value

The function returns the value of the pressed key.

Related links

e Console

Page 173

congetstr
Getting a string after text is displayed. Get the string entered by the user w ith some text displayed before that.
func str congetstr (

str output,

str input
)

Parameters
output Text for displaying.
input The variable of the str type for getting data.

Return value

Returns the parameter input.

Related links

° Console

Page 174

conread

Get a string entered by the user.

func str conread (
str input

)
Parameters

input The variable of the str type for getting data.

Return value

Returns the parameter input.

Related links

Console

Page 175

conrequest
Displaying a multiple choice request on the console.
func uint conrequest (

str output,

str answer

)

Parameters

output Request text.

answer Enumerating possible answ er letters. Answ er variants are separated by '|'. For example, "Nn|Yy"
Return value

The function returns the number of the selected variant beginning from 0.

Related links

° Console

Page 176

conyesno
Displaying a question on the console.
func uint conyesno (

str output

)
Parameters
output Question text.

Return value

The function returns 1 if the answ er is 'yes' and 0 otherw ise.

Related links

e Console

Page 177

Ccsv

Working w ith CSV data. Variables of the csv type allow you to w ork w ith data in the csv format.

string1_1,"string1_2",string1_3
string2_1,"string2_2",string2_3

The csv type is inherited from str type. So, you can use string methods and operators. For using this library, it is required to

specify the file csv.g (from lib\csv subfolder) w ith include command.
include : $"...\gentee\lib\csv\csv.g"

Operators
Methods

Operators

foreach var,csv

Methods
csv.append
csv.clear
csv.read
csv.settings

csv.write

Foreach operator.

Adds a string to a csv object.
Clear the csv data object.

Read data from a csv file.

Set separating and limiting characters for csv data.

Writing csv data to a file.

Page 178

foreach var,csv

Foreach operator. Looking through all items w ith the help of the foreach operator. An element in an object of the csv type is an

array of strings arrstr. Each string is split into separate elements by the separator and these elements are written into the passed
array.

CSV mycsv
uint i k

foreach item, mycsv

{
print ("Item: \ (++i)\n")
fornum k = 0, *item
{
print ("\ (item[k])\n")
}
}
foreach variable,csv {...}
Related links
CSsSv

Page 179

csv.append
Adds a string to a csv object.

method csv.append (
arrstr arrs

)

Parameters

arrs The array of strings containing the elements of a string. All strings w ill be combined into one record and added to the csv
object.

Related links
Csv

Page 180

csv.clear
Clear the csv data object.

method uint csv.clear()
Related links
Csv

Page 181

csv.read
Read data from a csv file.

method uint csv.read
str filename

)
Parameters

filename
Return value
The size of the read data.

Related links
Csv

(

Filename.

Page 182

csv.settings

Set separating and limiting characters for csv data.

method csv.settings (
uint separ,
uint open,
uint close

)

Parameters

separ Separator. Comma by default.

open The left limiting character. Double quotes by default.
close The right limiting character. Double quotes by default.

Related links
Ccsv

Page 183

csv.write
Writing csv data to a file.
method uint csv.write (

str filename

)
Parameters
filename The name of the file for writing. If the file already exists, it will be overw ritten.

Return value

The size of the written data.

Related links
Csv

Page 184

Date & Time

Functions for w orking w ith date and time.

Operators
Functions

Methods

File time functions and operators

Types
Operators
datetime = datetime
datetime += uint
datetime -= uint
datetime - datetime
datetime + datetime
datetime == datetime
datetime < datetime

datetime > datetime
Functions

abbrnameofday
days
daysinmonth
firstdayofweek
getdateformat
getdatetime
gettimeformat
isleapyear

nameofmonth

Methods
datetime.dayofweek
datetime.dayofyear
datetime.fromstr
datetime.gettime
datetime.getsystime
datetime.normalize
datetime.setdate

datetime.tostr

Copying datatime structure.

Adding days to a date.

Subtracting days from a date.

Difference betw een tw o dates as days and time.
Adding tw o dates as days and time.

Comparison operations.

Comparison operation.

Comparison operation.

Get the short name of a w eekday in the user's language.
The number of days betw een tw o dates.

The number of days in a month.

Get the first day of a w eek for the user's locale.

Get date in the specified format.

Getting date and time as strings.

Get time in the specified format.

Leap year check.

Get the name of a month in the user's language.

Get the w eekday.

Get the number of a particular day in the year.

Convert string like SSMMHHDDMMYYYY to datetime structure.
Getting the current date and time.

Getting the current system date and time.

Normalizing a datetime structure.

Specifying a date.

Convert a datetime structure to string like SSMMHHDDMMYYYY.

File time functions and operators

filetime = filetime

filetime == filetime

filetime < filetime

Copying filetime structure.
Comparison operations.

Comparison operation.

Page 185

filetime > filetime
datetimetoftime
ftimetodatetime

getfiledatetime
Types

datetime

filetime

Comparison operation.
Converting date from datetime into filetime.
Converting date from filetime into datetime.

Getting date and time as strings.

The datetime structure.

The filetime structure.

Page 186

datetime = datetime

Copying datatime structure.

operator datetime = (
datetime Ieft,
datetime right

)
Return value

The result datetime.

Related links
° Date & Time

Page 187

datetime += uint
Adding days to a date.
operator datetime += (
datetime left,
uint next

)
Return value

The result datetime.

Related links
° Date & Time

Page 188

datetime -= uint
Subtracting days from a date.
operator datetime -= (
datetime Ieft,
uint next

)
Return value

The result datetime.

Related links
° Date & Time

Page 189

datetime - datetime
operator datetime -<result>(_datetime left, datetime right)
operator datetime -=(_datetime left, datetime right)

Difference betw een tw o dates as days and time. All values are positive numbers.

operator datetime -<result> (
datetime Ieft,
datetime right

)

Return value

The result datetime.

datetime -= datetime

Difference betw een tw o dates as days and time. All values are positive numbers.

operator datetime -= (
datetime Ieft,
datetime right

)

Return value

The result datetime.

Related links
Date & Time

Page 190

datetime + datetime
operator datetime +<result>(datetime left, datetime right)
operator datetime +=(_datetime left, datetime right)

Adding tw o dates as days and time. All values are positive numbers.

operator datetime +<result> (
datetime Ieft,
datetime right

)

Return value

The result datetime.

datetime += datetime
Adding one datetime to another datetime structure.
operator datetime += (
datetime Ieft,
datetime right

)
Return value

The result datetime.

Related links
Date & Time

Page 191

datetime == datetime
e operator uint ==(_datetime left, datetime right)

e operator uint !=(datetime left, datetime right)

Comparison operations.

operator uint == (
datetime left,
datetime right

)

Return value

Returns 1 if the datetimes are equal. Otherw ise, it returns 0.

datetime != datetime

Comparison operation.

operator uint !'= (
datetime left,
datetime right

)
Return value

Returns 0 if the datetimes are equal. Otherw ise, it returns 1.

Related links
° Date & Time

Page 192

datetime < datetime
e operator uint <(datetime left, datetime right)

e operator uint <=(_datetime left, datetime right)

Comparison operation.

operator uint < (
datetime left,
datetime right

)

Return value

Returns 1 if the first datetime is less than the second one. Otherw ise, it returns 0.

datetime <= datetime

Comparison operation.

operator uint <= (
datetime left,
datetime right

)
Return value

Returns 1 if the first datetime is less or equal the second one. Otherw ise, it returns 0.

Related links
° Date & Time

Page 193

datetime > datetime
e operator uint >(datetime left, datetime right)

e operator uint >=(_datetime left, datetime right)

Comparison operation.

operator uint > (
datetime left,
datetime right

)

Return value

Returns 1 if the first datetime is greater than the second one. Otherw ise, it returns 0.

datetime >= datetime

Comparison operation.

operator uint >= (
datetime left,
datetime right

)
Return value

Returns 1 if the first datetime is greater or equal the second one. Otherw ise, it returns 0.

Related links
° Date & Time

Page 194

abbrnameofday
Get the short name of a w eekday in the user's language.
func str abbrnameofday (

str ret,

uint dayofweek

)

Parameters
ret The string for getting the result.
dayofweek The number of the w eekday. 0 is Sunday, 1 is Monday...

Return value

Returns the parameter ret.

Related links

° Date & Time

Page 195

days
The number of days betw een tw o dates.
func int days (

datetime Ieft,

datetime right
)

Parameters
left The first date for comparison.
right The second date for comparison.

Return value

Returns the number of days betw een tw o dates. If the first date is greater than the second one, the return value will be negative.

Related links

° Date & Time

Page 196

daysinmonth

The number of days in a month. Leap years are taken into account for February.

func uint daysinmonth (
ushort year,
ushort month

)

Parameters
year Year.
month Month.

Return value

Returns the number of days in the month.

Related links
Date & Time

Page 197

firstdayofweek

Get the first day of a w eek for the user's locale.

func uint firstdayofweek ()
Return value

Returns the number of the w eekday. 0 is Sunday, 1 is Monday...

Related links
e Date & Time

Page 198

getdateformat

Get date in the specified format.

func str getdateformat (
datetime systime,

str format,
str date

)
Parameters
systime

format

date
Return value

Returns the parameter date.

Related links
° Date & Time

The variable containing date.

Date format. It can contain the follow ing values:

dd Day as a number.

ddd Weekday as an abbriviation.
dddd The full name of a w eekday.
MM Month as a number.

MMM Month as an abbreviation.
MMMM The full name of a month.
yy The last tow digits in a year.
yyyy Year.

The string for getting the date.

Page 199

getdatetime

Getting date and time as strings. Get date and time in the current Window s string format.

func getdatetime (
datetime systime,
str date,
str time
)
Parameters
systime Datetime structure.

date The string for getting the date. It can be 0->str.

time The string for getting time. It can be 0->str.

Related links
Date & Time

Page 200

gettimeformat
Get time in the specified format.

func str gettimeformat (
datetime systime,
str format,

str time
)
Parameters
systime The variable containing time.
format Time format. It can contain the follow ing values:
hh Hours - 12-hour format.
HH Hours -24-hour format.
mm Minutes.
ss Seconds.
tt Time marker, such as AM or PM.
time The string for getting time.

Return value

Returns the parameter time.

Related links

e Date & Time

Page 201

isleapyear

Leap year check.

func uint isleapyear (
ushort year

)

Parameters

year The year being checked.

Return value

Returns 1 if the year is a leap one and 0 otherw ise.

Related links
Date & Time

Page 202

nameofmonth
Get the name of a month in the user's language.
func str nameofmonth (

str ret,

uint month

)

Parameters
ret Result string.
month The number of the month from 1.

Return value

Returns the parameter ret.

Related links
Date & Time

Page 203

datetime.dayofweek
Get the w eekday.

method uint datetime.dayofweek
Return value
Returns the w eekday. 0 is Sunday, 1 is Monday...

Related links
Date & Time

Page 204

datetime.dayofyear
Get the number of a particular day in the year.

method uint datetime.dayofyear
Return value

Returns the number of a particular day in the year.

Related links
Date & Time

Page 205

datetime.fromstr

Convert string like SSMMHHDDMMYYYY to datetime structure.

method datetime datetime.fromstr (
str data

)
Parameters
data The string to be converted.

Return value
Returns the object w hich method has been called.

Related links
Date & Time

Page 206

datetime.gettime

Getting the current date and time. The w eekday is set automatically.

method datetime datetime.gettime ()
Return value

Returns the object w hich method has been called.

Related links
Date & Time

Page 207

datetime.getsystime
Getting the current system date and time.

method datetime datetime.getsystime ()
Return value
Returns the object w hich method has been called.

Related links
Date & Time

Page 208

datetime.normalize

Normalizing a datetime structure. For example, if the hour parameter is 32 hours, it will equal 8 and the day parameter is increased
by 1.

method datetime datetime.normalize ()
Return value

Returns the object w hich method has been called.

Related links

e Date & Time

Page 209

datetime.setdate
Specifying a date. The w eekday is set automatically.

method datetime datetime.setdate
uint day,
uint month,
uint year

)

Parameters

day

month

year

Return value

Returns the object w hich method has been called.

Related links
Date & Time

(

Day.

Month.

Year.

Page 210

datetime.tostr

Convert a datetime structure to string like SSMMHHDDMMYYYY.

method str datetime.tostr (
str ret
)
Parameters
ret The result string the datetime to be converted to.
Return value

Returns the parameter ret.

Related links
Date & Time

Page 211

filetime = filetime

Copying filetime structure.

operator filetime = (
filetime left,
filetime right

)

Return value

The result filetime.

Related links
° Date & Time

Page 212

filetime == filetime
e operator uint ==(filetime left, filetime right)

e operator uint !=(filetime left, filetime right)

Comparison operations.

operator uint == (
filetime Ieft,
filetime right

)

Return value

Returns 1 if the filetimes are equal. Otherw ise, it returns 0.

filetime != filetime

Comparison operation.

operator uint !'= (
filetime left,
filetime right

)
Return value

Returns 0 if the filetimes are equal. Otherw ise, it returns 1.

Related links
° Date & Time

Page 213

filetime < filetime
e operator uint <(filetime left, filetime right)

e operator uint <=(filetime left, filetime right)

Comparison operation.

operator uint < (
filetime Ieft,
filetime right

)

Return value

Returns 1 if the first filetime is less than the second one. Otherw ise, it returns 0.

filetime <= filetime

Comparison operation.

operator uint <= (
filetime left,
filetime right

)
Return value

Returns 1 if the first filetime is less or equal the second one. Otherw ise, it returns 0.

Related links
° Date & Time

Page 214

filetime > filetime
e operator uint >(filetime left, filetime right)

e operator uint >=(filetime left, filetime right)

Comparison operation.

operator uint > (
filetime Ieft,
filetime right

)

Return value

Returns 1 if the first filetime is greater than the second one. Otherw ise, it returns 0.

filetime >= filetime

Comparison operation.

operator uint >= (
filetime left,
filetime right

)
Return value

Returns 1 if the first filetime is greater or equal the second one. Otherw ise, it returns 0.

Related links
° Date & Time

Page 215

datetimetoftime
Converting date from datetime into filetime.

func uint datetimetoftime (
datetime dt,
filetime ft

)

Parameters
dt Datetime structure.
ft The variable of the filetime type for getting the result.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

° Date & Time

Page 216

ftimetodatetime
Converting date from filetime into datetime.

func datetime ftimetodatetime (
filetime ft,
datetime dt,
uint local

)

Parameters

ft A structure of the filetime type. Can be taken from the finfo structure.
dt A datetime structure for getting the result.

Jocal Specify 1 if you need to take the local time into account.

Return value

Returns the parameter dt.

Related links
Date & Time

Page 217

getfiledatetime

Getting date and time as strings. Get the data and time of the last file modification as strings.
func getfiledatetime (

filetime ftime,

str date,

str time

)
Parameters

ftime A structure of the filetime type. Can be taken from the finfo structure.
date The string for w riting date. It can be 0->str.
time The string for w riting time. It can be 0->str.

Related links
° Date & Time

Page 218

datetime

The datetime structure. An object of the datetime type is used to w ork w ith time. This type can contain information about date and

time.

type datetime

{
ushort year
ushort month
ushort dayofweek
ushort day
ushort hour
ushort minute
ushort second
ushort msec

}

Members

year Year.

month Month.

dayofweek Weekday. Counted from 0. 0 is Sunday, 1 is Monday...
day Day.

hour Hours.

minute Minutes.

second Seconds.

msec Milliseconds.

Related links

e Date & Time

Page 219

filetime
The filetime structure. The filetime type is used to w ork w ith time of files.

type filetime
{
uint Ilowdtime
uint highdtime
}
Members
lowdtime Low uint value.

highdtime High uint value.

Related links
e Date & Time

Page 220

Dbf

This library is used to w ork w ith dbf files. The formats dBase lll and dBase IV are supported. To be able to w ork, you should
describe a variable of the dbf type. For using this library, it is required to specify the file dbf.g (from Lib subfolder) w ith include

command.

include : $"...\gentee\lib\dbf\dbf.g"

Operators
Methods
Field methods

Operators
* dbf

foreach var,dbf

Methods
dbf.append
dbf.bof
dbf.bottom
dbf.close
dbf.create
dbf.del
dbf.em pty
dbf.eof
dbf.geterror
dbf.go
dbf.isdel
dbf.open
dbf.pack
dbf.recno
dbf.skip

dbf.top
Field methods

dbf.f_count
dbf.f_date
dbf.f_decimal
dbf.f_double
dbf.f_find
dbf.f_int
dbf.f_logic
dbf.f_ memo
dbf.f_name

dbf.f_offset

Get the number of records in the database.

Foreach operator.

Adding a record.

Determine is the current record is the first one.
Move to the last record.

Close a database.

Create a dbf file and open it.

Set/clear the deletion mark for the current record.
Creating an empty copy.

Determine is the current record is in the database.
Getting an error code.

Move to the record w ith the specified number.
Getting the record deletion mark.

Open a database (a dbf file).

Pack a database.

Getting the number of the current record.

Moving to another record.

Move to the first record.

Number of fields.

Getting a date.

Getting the size of the fractional part in a numerical field.

Getting a numerical value.

Getting the number of a field by its name.
Getting an integer value.

Getting a logical value.

Get the value of a memo field.

Get the name of the specified field.

Get the offset of the field.

Page 221

dbf.f_ptr
dbf.f_str
dbf.f_type
dbf.f_width
dbf.fw_date
dbf.fw_double
dbf.fw_int
dbf.fw_logic
dbf.fw_memo

dbf.fw_str

Pointer to data.

Getting a value.

Get the field type.

Get the width of the specified field.
Writing a date.

Writing a numerical value.

Writing an integer value.

Writing a logical value.

Writing a value into a memo field.

Writing a value.

Page 222

* dbf

Get the number of records in the database.

operator uint * (
dbf dbase

)

Return value

The number of records.

Related links
Dbf

Page 223

foreach var,dbf

Foreach operator. You can use foreach operator to look over all records of the database. Variable is a number of the current
record.
foreach variable,dbf {...}
Related links
Dbf

Page 224

dbf.append
Adding a record. The method adds a record to a database.

method uint dbf.append()
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 225

dbf.bof

Determine is the current record is the first one.

method uint dbf.bof ()
Return value

1 is returned if the current record is the first one.

Related links
Dbf

Page 226

dbf.bottom

Move to the last record.
method uint dbf.bottom()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 227

dbf.close
Close a database.

method dbf.close()
Related links
Dbf

Page 228

dbf.create

Create a dbf file and open it.

method uint

dbf.create (

str filename,
str fields,

uint ver
)
Parameters
filena
me

fields

ver

Return value

The name of the dbf file being created.

The description of database fields. The line containing the description of fields separated by a line break or ';'
Field name,Field type,Width,Fractional part length for numbers The name of a field cannot be longer than 10

characters. Possible type fields:
$DBFF_CHAR

$DBFF_DATE

$DBFF_LOGIC
$DBFF_NUMERIC
$DBFF_FLOAT

$DBFF_MEMO
Version. 0 for dBase Il or 1 for dBase IV.

String.
Date.
Logical.
Integer.

Fraction.

Memo field.

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 229

dbf.del

Set/clear the deletion mark for the current record.

method uint dbf.del

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 230

dbf.empty
Creating an empty copy. The method creates the same, but empty database.
method uint dbf.empty (

str outfile
)

Parameters

filename The full name of the dbf file being created.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 231

dbf.eof

Determine is the current record is in the database.
method uint dbf.eof (

fordata fd
)
Parameters
fd This parameter is used in forech operator. Specify 0->fordata.
Return value
Returns 1 if the current record is not defined/found and 0 otherw ise.

Related links
Dbf

Page 232

dbf.geterror
Getting an error code. Get the error code in case some method is finished unsuccessfully.

method uint dbf.geterror()
Return value

The code of the last error is returned.

$ERRDBF_OPEN Cannot open dbf file.
$ERRDBF_READ Cannot read dbf file.
$ERRDBF_POS File position error.
$ERRDBF_EOF There is not the current record.
$ERRDBF_WRITE Cannot w rite dbf file.
$ERRDBF_FOVER The length of the string being w ritten is greater than the size of the field.
$ERRDBF_TYPE Incompatible field type.
$ERRDBT_OPEN Cannot open dbt file.
$ERRDBT_READ Cannot read dbt file.
$ERRDBT_POS An error of positioning in the dbt file.
$ERRDBT_WRITE Cannot w rite dbt file.
Related links

Dbf

Page 233

dbf.go

Move to the record w ith the specified number.

method uint dbf.go (
uint num

)
Parameters
num The required record number starting from 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 234

dbf.isdel

Getting the record deletion mark. Determine if the current record is marked as deleted.
method uint dbf.isdel ()

Return value

1 is returned if the current record is marked as deleted.

Related links
Dbf

Page 235

dbf.open
Open a database (a dbf file).
method uint dbf.open (

str name

)

Parameters

name The name of the dbf file being opened.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 236

dbf.pack

Pack a database. The database is copied into a new file excluding records marked as deleted.

method uint dbf.pack (
str outfile

)
Parameters
outfile The name of the new dbf file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 237

dbf.recno
Getting the number of the current record.

method uint dbf.recno()
Return value

The number of the current record or 0 if the record is not defined.

Related links
Dbf

Page 238

dbf.skip

Moving to another record. Move forw ard or backw ard for the specified number of records.
method uint dbf.skip (
int step
)
Parameters
step The step of moving. If it is less than zero, the move will be tow ard the beginning of the database.
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 239

dbf.top

Move to the first record.
method uint dbf. top ()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 240

dbf.f_count

Number of fields.
method uint dbf.f count()
Return value

Returns the number of fields.

Related links
Dbf

Page 241

dbf.f_date

e method datetime dbf.f_date(datetime dt, uint num)
e method str dbf.f date(str val, uint num)

Getting a date. Getting the date from the specified field of the current record into the structure datetime.

method datetime dbf.f date (
datetime dt,
uint num

)

Parameters
dt The structure for getting the date.
num Field number beginning w ith 1.

Return value

Returns the parameter dt.

dbf.f_date
Getting the date from the specified field of the current record as a string.
method str dbf.f date (

str val,

uint num

)

Parameters
val The string for getting the date.
num Field number beginning w ith 1.

Return value

Returns the parameter val.

Related links
e Dbf

Page 242

dbf.f_decimal

Getting the size of the fractional part in a numerical field.

method uint dbf.f decimal (
uint num

)
Parameters
num Field number beginning w ith 1.

Return value
The size of the fractional part.

Related links
Dbf

Page 243

dbf.f_double

Getting a numerical value. Get a numerical value of the double type from the specified field of the current record.

method double dbf.f double (
uint num

)
Parameters
num Field number beginning w ith 1.

Return value
A value of the double type.

Related links
Dbf

Page 244

dbf.f_find

Getting the number of a field by its name.

method uint dbf.f find (
str name

)
Parameters
name The name of the field.

Return value

The number of the field w ith the specified name or 0 in case of an error.

Related links
Dbf

Page 245

dbf.f_int

Getting an integer value. Get a numerical value of the int type from the specified field of the current record.

method int dbf.f int (
uint num

)
Parameters
num Field number beginning w ith 1.

Return value
A number of the int type is returned.

Related links
Dbf

Page 246

dbf.f_logic
Getting a logical value. Get the value of the logical field from the current record.
method uint dbf.f logic (

uint num

)
Parameters
num Field number beginning w ith 1.

Return value

Returns the value of the logical field.

$DBF_LFALSE The value of the logical field is FALSE.
$DBF_LTRUE The value of the logical field is TRUE.
$DBF_LUNKNOWN The value of the logical field is undefined.
Related links

Dbf

Page 247

dbf.f_memo

Get the value of a memo field. Get the value of the memo field from the current record.

method uint dbf.f memo (
str val,
uint num

)

Parameters
val The string for w riting the value.
num Field number beginning w ith 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 248

dbf.f_name
Get the name of the specified field.

method str dbf.f name (
uint num

)
Parameters

num Field number beginning w ith 1.

Return value

Returns the name of the specified field.

Related links
Dbf

Page 249

dbf.f_offset
Get the offset of the field.

method uint dbf.f offset (
uint num

)
Parameters

num Field number beginning w ith 1.

Return value
Returns the offset of this field.

Related links
Dbf

Page 250

dbf.f_ptr

Pointer to data. Get the pointer to the contents of this field from the current record.

method uint dbf.f ptr (
uint num

)
Parameters
num Field number beginning w ith 1.

Return value
Returns the pointer to this field.

Related links
Dbf

Page 251

dbf.f_str

Getting a value. Get the value of the field from the current record as a string.

method str dbf.f str (
str val,
uint num

)

Parameters
val The string for getting the value.
num Field number beginning w ith 1.

Return value

Returns the parameter val.

Related links
Dbf

Page 252

dbf.f_type
Get the field type.

method uint dbf.f type (
uint num

)
Parameters
num Field number beginning w ith 1.

Return value

Returns the type of this field. It can be one of the follow ing values.

$DBFF_CHAR
$DBFF_DATE
$DBFF_LOGIC
$DBFF_NUMERIC
$DBFF_FLOAT

$DBFF_MEMO
Related links
Dbf

String.
Date.
Logical.
Integer.
Fraction.

Memo field.

Page 253

dbf.f_width
Get the width of the specified field.

method uint dbf.f width (
uint num

)
Parameters

num Field number beginning w ith 1.

Return value
Returns the w idth of the field.

Related links
Dbf

Page 254

dbf.fw_date

Writing a date. Write a date into the specified field of the current record.

method uint dbf.fw_date (
datetime dt,
uint num

)

Parameters
dt The structure datetime containing the date.
num Field number beginning with 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 255

dbf.fw_double

Writing a numerical value. Write a numerical value into the specified field of the current record.

method uint dbf.fw_double (
double dval,
uint num

)

Parameters
dval The number being w ritten.
num Field number beginning w ith 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 256

dbf.fw_int

Writing an integer value. Write a value of the int type into the specified field of the current record.

method uint dbf.fw_int (
int ival,
uint num

)

Parameters
ival The number being w ritten.
num Field number beginning w ith 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 257

dbf.fw_logic

Writing a logical value. Write a logical value into the specified field of the current record.

method uint dbf.fw logic (
uint val,
uint num

)

Parameters
val Number 1 or 0.
num Field number beginning w ith 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 258

dbf.fw_memo

Writing a value into a memo field. Write a value into the specified memo field of the current record.

method uint dbf.fw _memo (
str val,
uint num

)

Parameters
val The string being w ritten.
num Field number beginning w ith 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 259

dbf.fw_str

Writing a value. Write a value into the specified field of the current record.

method uint dbf.fw_str (
str val,
uint num

)

Parameters
val The string being w ritten.
num Field number beginning w ith 1.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Dbf

Page 260

Files

File system functions.

Methods
Functions

Search and fileinfo functions

Related Methods

Methods
file.close
file.getsize
file.gettime
file.open
file.read
file.setpos
file.settime

file.write
Functions

copyfile
copyfiles
createdir
deletedir
deletefile
delfiles
direxist
fileexist
getcurdir
getdrives
getdrivetype
getfileattrib
getmodulename
getmodulepath
gettempdir
isequalfiles
movefile
setattribnormal
setcurdir
setfileattrib

verifypath

Close a file.

Get the size of the file.

Get the time w hen the file w as last modified.
Open a file.

Reading a file.

Set the current position in the file.

Set time for a file.

Writing to a file.

Copy a file.

Copying files and directories by mask.

Create a directory.

Delete a directory.

Delete a file.

Deleting files and directories by mask.

Checking if a directory exists.

Checking if a file exists.

Getting the current directory.

Get the names of available disks.

Get the type of a disk.

Getting file attributes.

Get the file name of the currently running application.
Get the path to the running EXE file.

Get the temporary directory of the application.
Check if files are equal.

Rename, move a file or a directory.

Setting the attribute $FILE_ATTRIBUTE_NORMAL.
Setting the current directory.

Set file attributes.

Verifying a path and creating all absent directories.

Search and fileinfo functions

Page 261

finfo

ffind

foreach var,ffind
ffind.init

getfileinfo

Related Methods
arrstr.read
arrstr.write
buf.read

buf.write
buf.writeappend
str.read

str.write

str.writeappend

File information structure.
File search structure.
Foreach operator.
Initializing file search.

Get information about a file or directory.

Read a multi-line text file to array of strings.

Write an array of strings to a multi-line text file.

Reading from a file.
Writing to a file.
Appending data to a file.
Read a string from a file.
Writing a string to a file.

Appending string to a file.

Page 262

file.close

Close a file.

method uint file.close()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 263

file.getsize
Get the size of the file.

method uint file.getsize()
Return value

The size of the file less 4GB.
Related links

e Files

Page 264

file.gettime
Get the time w hen the file w as last modified.

method uint file.gettime (
filetime ft
)
Parameters
ft The variable for getting the time of a file.
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 265

file.open
Open a file.

method uint file.open (
str name,

uint flag
)
Parameters
name The name of the file to be opened.
flag The follow ing flags can be used.
$OP_READONLY Open as read-only.
$OP_EXCLUSIVE Open in the exclusive mode.
$OP_CREATE Create the file.
$OP_ALWAYS Create the file only if it does not exist.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 266

file.read
method uint file.read(_uint ptr, uint size)
method uint file.read(buf rbuf, uint size)

Reading a file.

method uint file.read (
uint ptr,
uint size

)

Parameters
ptr The pointer w here the file will be read.
size The size of the data being read.

Return value

The function returns the size of the read data.

file.read

Reading a file.

method uint file.read (
buf rbuf,
uint size

)
Parameters

rbuf The buffer where data will be read. Reading is carried out by adding data to the buffer. It means that read data wiill be

added to those already existing in the buffer.
size The size of the data being read.

Return value

The function returns the size of the read data.

Related links

Files

Page 267

file.setpos
Set the current position in the file.
method uint file.setpos (
int offset,
uint mode

)

Parameters
offset Position offset.
mode The type of moving the position.
$FILE_BEGIN From the beginning of the file.
$FILE_CURRENT From the current position.
$FILE_END From the end of the file.

Return value

The function returns the current position in the file.

Related links

e Files

Page 268

file.settime
Set time for a file.

method uint file.settime (
filetime ft
)
Parameters
ft New time for the file.
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 269

file.write
method uint file.w rite(_uint data, uint size)
method uint file.w rite(buf rbuf)
method uint file.w ritepos(_uint pos, uint data, uint size)

Writing to a file.

method uint file.write (
uint data,
uint size

)

Parameters
data The pointer to the memory w hich data will be w ritten.
size The size of the data being w ritten.

Return value

The function returns the size of the written data.

file.write
Writing to a file.

method uint file.write (
buf rbuf

)
Parameters
rbuf The buffer from w hich data w ill be w ritten.

Return value

The function returns the size of the written data.

file.writepos

Writing to a file from the position.

method uint file.writepos (
uint pos,
uint data,
uint size

)

Parameters

pos The start position for w riting.

data The pointer to the memory w hich data will be w ritten.
size The size of the data being w ritten.

Return value

The function returns the size of the written data.

Related links

Files

Page 270

copyfile

Copy a file.

func uint copyfile (
str name,

str newname

)

Parameters
name The name of an existing file.
newname A new file name and path. If the file already exists, it will be overw ritten.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

° Files

Page 271

copyfiles

func uint copyfiles(str src, str dir, uint flag, uint mode, uint process)

func uint defcopyproc(uint code, uint left, uint right)

Copying files and directories by mask.

func uint copyfiles (
str src,
str dir,
uint flag,
uint mode,
uint process

)

Parameters
src The names of mask of the files or directories being copied.
dir The directory w here files w ill be copied.
flag The combination of search and copy flags.
$FIND_DIR Search only for directories.
$FIND_FILE Search only for files.
$FIND_RECURSE Search in all subdirectories.
Overw rite files w ith the attribute read-only.
$COPYF_RO
$COPYF_SAVEPATH Keep relative paths w hile copying files from subdirectories.
$COPYF_ASK Prompt before copying files already existing.
mode What to do if the file being copied already exists.
$COPY_OVER Overw rite.
$COPY_SKIP Skip.
$COPY_NEWER Overw rite if new er.
$COPY_MODIFIED Overw rite if modified.
procce The identifier of the function handling messages. You can use &defcopyproc as a default process
ss function.

Return value

The function returns 1 if the copy operation is successful, otherw ise it returns 0.

defcopyproc

This is a default process function for copyfiles. You can develop and use your ow n process function like it.

func uint defcopyproc (
uint code,
uint left,
uint right
)
Parameters
code The message code.

$COPYN_FOUND
$COPYN_NEWDIR
$COPYN_ERRDIR
$COPYN_ASK
$COPYN_ERRFILE
$COPYN_NEWFILE
$COPYN_BEGIN
$COPYN_PROCESS

The object for copying is found.
A directory is created.

Cannot create a directory.
Copy request.

Error w hile creating a file.

A file w as created.

Start copying file.

A file is being copied.

Page 272

left
right
Return value

$COPYN_END Copying is over.

$COPYN_ERRWRITE Error w hile writing a file.

Additional parameter.
Additional parameter.

You should return one of the follow ing values:

$COPYR_NOTHING
$COPYR_BREAK
$COPYR_RETRY
$COPYR_SKIP
$COPYR_OVER
$COPYR_OVERALL

$COPYR_SKIPALL
Related links

Files

Do nothing.

Break copying.
Retry.

Skip.

Write over.

Write over all files.

Skip all files.

Page 273

createdir
Create a directory.
func uint createdir (

str name

)
Parameters
name The name of the directory being created.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 274

deletedir

Delete a directory.

func uint deletedir (
str name

)
Parameters
name The name of the directory being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 275

deletefile
Delete a file.

func uint deletefile (
str name

)
Parameters
name The name of the file being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 276

delfiles

Deleting files and directories by mask. Directories are deleted together w ith all files and subdirectories. Be really careful w hile
using this function. For example, calling

delfiles("c:\\temp", SFIND DIR | S$SFIND FILE | SFIND RECURSE)
w ill delete all files and directories named temp on the disk N: including a search in all directories. In this case temp is considered a
mask and since the flag $FIND_RECURSE is specified, the entire disk C: wiill be searched. If you just need to delete the directory
temp w ith all its subdirectories and files, you should call
delfiles("c:\\temp", SFIND DIR)
Calling
delfiles("c:\\temp*.tmp", S$FIND FILE)
w ill delete all files in the directory tmp leaving subdirectories.
func delfiles (
str name,

uint flag
)
Parameters
name The name of mask for searching.
flag Search and delete flags.
$FIND_DIR Search only for directories.
$FIND_FILE Search only for files.
$FIND_RECURSE Search in all subdirectories.
Delete files w ith the attribute read-only.
$DELF_RO
Related links
e Files

Page 277

direxist
Checking if a directory exists.
func uint direxist (

str name

)
Parameters

name Directory name.

Return value

The function returns 1, if the specified directory exists.

Related links

Files

Page 278

fileexist
Checking if a file exists.

func uint fileexist (
str name

)
Parameters

name

Return value

The function returns 1, if the specified file exists.

Related links

Files

Filename.

Page 279

getcurdir
Getting the current directory.

func str getcurdir (
str dir

)

Parameters

dir The string for getting the result.

Return value

Returns the parameter dir.

Related links

Files

Page 280

getdrives
Get the names of available disks.

func arrstr getdrives <result>()
Return value
The array (arrstr) of the disk names.

Related links

Files

Page 281

getdrivetype
Get the type of a disk.
func uint getdrivetype (

str name

)
Parameters
drive The name of a disk w ith a closing slash. For example: C:\

Return value

Returns one of the follow ing values:

$DRIVE_UNKNOWN Unknow n type.
$DRIVE_NO_ROOT_DIR Invalid path to root.
$DRIVE_REMOVABLE Removable disk.
$DRIVE_FIXED Fixed disk.
$DRIVE_REMOTE Netw ork disk.
$DRIVE_CDROM CD/DVD-ROM drive.
$DRIVE_RAMDISK RAM disk.
Related links

Files

Page 282

geftfileattrib
Getting file attributes.
func uint getfileattrib (

str name

)
Parameters
name Filename.

Return value

The function returns file attributes. It returns OXFFFFFFFF in case of an error.

$FILE_ATTRIBUTE_READONLY Read-only.
$FILE_ATTRIBUTE_HIDDEN Hidden.
$FILE_ATTRIBUTE_SYSTEM System.
$FILE_ATTRIBUTE_DIRECTORY Directory.
$FILE_ATTRIBUTE_ARCHIVE Archive.
$FILE_ATTRIBUTE_NORMAL Normal.
$FILE_ATTRIBUTE_TEMPORARY Temporary.
$FILE_ATTRIBUTE_COM PRESSED Compressed.
Related links

e Files

Page 283

getmodulename
Get the file name of the currently running application.
func str getmodulename (

str dest

)
Parameters

dest The string for getting the name.

Return value

Returns the parameter dest.

Related links

Files

Page 284

getmodulepath
Get the path to the running EXE file.
func str getmodulepath (
str dest,
str subfolder
)

Parameters
dest Result string.
subfolder Additional path. This string wiill be added to the obtained result. It can be empty.

Return value

Returns the parameter dest.

Related links

e Files

Page 285

gettempdir
Get the temporary directory of the application. When this function is called for the first time, in the temporary directory there will be
created a directory named genteeXX, w here XX is a unique number for this running application. When the application is closed, the
directory will be deleted w ith all its files.
func str gettempdir (

str dir

)
Parameters
dir The string for getting the result.

Return value
Returns the parameter dir.

Related links

e Files

Page 286

isequalfiles

Check if files are equal. The function compares tw o files.

func uint isequalfiles (

str left,
str right
)
Parameters
left The name of the first file to be compared.
right The name of the second file to be compared.

Return value

The function returns 1 if the files are equal, otherw ise it returns 0.

Related links

Files

Page 287

movefile

Rename, move a file or a directory.

func uint movefile (
str name,

str newname

)

Parameters
name The name of an existing file or a directory.
newname A new file name and path.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 288

setattribnormal
Setting the attribute $FILE_ATTRIBUTE_NORMAL.
func uint setattribnormal (

str name

)
Parameters
name Filename.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 289

setcurdir
Setting the current directory.
func uint setcurdir (

str dir

)
Parameters
dir The name of the new current directory.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Files

Page 290

setfileattrib

Set file attributes.

func uint setfileattrib (
str name,
uint attrib

)

Parameters
name Filename.
attrib File attributes.

$FILE_ATTRIBUTE_READONLY
$FILE_ATTRIBUTE_HIDDEN
$FILE_ATTRIBUTE_SYSTEM
$FILE_ATTRIBUTE_DIRECTORY
$FILE_ATTRIBUTE_ARCHIVE
$FILE_ATTRIBUTE_NORMAL
$FILE_ATTRIBUTE_TEMPORARY

$FILE_ATTRIBUTE_COMPRESSED
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

Files

Read-only.
Hidden.
System.
Directory.
Archive.
Normal.

Temporary.

Compressed.

Page 291

verifypath
Verifying a path and creating all absent directories.
func uint verifypath (

str name,

arrstr dirs

)

Parameters
name The name of the path to be verified.
dirs An array for getting all the directories being created. It can be 0->arrstr.

Return value

The function returns 1 if directories have been verified and created successfully. In case of an error, the function returns 0 and
the last dirs item contains the name w here there occurred an error w hile creating a directory.

Related links

e Files

Page 292

finfo

File information structure. This structure is used by getffileinfo function and foreach operator.

type finfo

{
str fullname
str name
uint attrib
filetime created
filetime lastwrite
filetime lastaccess
uint sizehi
uint sizelo

}

Members

fullname

name

attrib

created

lastwrite

lastaccess

sizehi

sizelo

Related links

Files

The full name of the file or directory.

The name of the file or directory.
File attributes.

Creation time.

Last modification time.

Last access time.

High size uint.

Low size uint.

Page 293

ffind

File search structure. This structure is used in foreach operator. You must not modify fields of ffind variable. You must initialize it

w ith ffind.init method.

type ffind <index = finfo>

{
stack deep
str initname
str wildcard
uint flag

}

Members

deep

initname

wildcard

flag

Related links

Files

Hidden data.
Hidden data.
Hidden data.
Hidden data.

Page 294

foreach var,ffind

Foreach operator. You can use foreach operator to look over files in some directory w ith the specified wildcard. The finfo
structure will be returned for each found file. You must call ffind.init before using foreach.

ffind fd

fd.init("c:*.exe", SFIND FILE | SFIND RECURSE)

foreach finfo cur, fd

{
print ("\ (cur.fullname)\n")
}
foreach variable,ffind {...}
Related links
e Files

Page 295

ffind.init

Initializing file search. An object of the ffind type is used to search for files and directories by mask. Before starting the search,
you should call the init method. After this it is possible to use the initiated object in the foreach loop. The finfo structure will be

returned for each found file.

method f£find.

str name,

uint flag
)
Parameters
name
flag
Related links
e Files

init (

The mask for searching files and directories.

The combination of the follow ing flags:

$FIND_DIR Search only for directories.
$FIND_FILE Search only for files.
$FIND_RECURSE Search in all subdirectories.

Page 296

getfileinfo
Get information about a file or directory.

func uint getfileinfo (
str name,
finfo f1
)
Parameters
name The name of a file or directory.

fi The structure finfo all the information w ill be w ritten to.

Return value

It returns 1 if the file is found, it returns 0 otherw ise.

Related links

Files

Page 297

FTP

FTP protocol. You must call inet_init function before using this library. For using this library, it is required to specify the file ftp.g

(from lib\ftp subfolder) w ith include command.

include : $"...\gentee\lib\ftp\ftp.g"

Common internet functions

URL strings

ftp.close
ftp.command
ftp.createdir
ftp.deldir
ftp.delfile
ftp.getcurdir
ftp.getfile
ftp.getsize
ftp.gettime
ftp.lastresponse
ftp.list
ftp.open
ftp.putfile
ftp.rename
ftp.setattrib

ftp.setcurdir

Terminates the FTP connection.

Sends a command.

Creates a new directory.

Deletes a directory.

Deletes a file.

Retrieves the current directory.
Retrieves a file.

Retrieves the file size from the FTP server.
Retrieves the file time.

The last response from the FTP server.
List of files.

Establishes an FTP connection.

Stores a file on the FTP server.
Renames a file.

Sets the attributes.

Sets the current directory.

Common internet functions

inet_close
inet_error
inet_init
inet_proxy
inet_proxyenable

inetnotify_func

URL strings
str.iencoding
str.ihead
str.ihttpinfo

str.iurl

Closing the library.

Getting an error code.

Library initialization.

Using a proxy server.
Enabling/disabling a proxy server.

Message handling function.

Recoding a string.
Getting a header.
Processing a header.

The method is used to parse a URL address.

Page 298

ftp.close
Terminates the FTP connection. The method terminates the connection on the FTP server.

method uint ftp.close()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 299

ftp.command

Sends a command. This methos is used to send the specified command directly to an FTP server. The response from the server
can be received w ith help of the ftp.lastresponse method.

method uint ftp.command (
str cmd

)

Parameters

cmd The command text.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
ETP

Page 300

ftp.createdir
Creates a new directory. The method creates a new directory on the FTP server.

method uint ftp.createdir (
str dirname

)
Parameters
dirname The name of the directory

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 301

ftp.deldir

Deletes a directory. This method deletes a directory stored on the FTP server.

method uint ftp.deldir (
str dirname

)
Parameters
dirname The name of the required directory

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 302

ftp.delfile

Deletes a file. The method deletes a file stored on the FTP server.

method uint ftp.delfile (
str filename

)
Parameters
filename The name of the required file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 303

ftp.getcurdir
Retrieves the current directory. The method retrieves the current directory name from the FTP server.
method uint ftp.getcurdir (

str dirname

)
Parameters
dirname Result string.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 304

ftp.getfile

method uint ftp.getfile(_str filename, buf databuf, uint flag)

method uint ftp.getfile(str srcname, str destname, uint flag)

Retrieves a file. The method retrieves files from the FTP server.
method uint ftp.getfile (

str filename,

buf databuf,

uint flag
)
Parameters
filename The dow nloaded file name.
databuf The received data buffer. Data are not stored on a drive.
flag Additional flags.
$FTP_BINARY A binary file is dow nloaded.
SFTP_TEXT A text file is dow nloaded. This is a default mode.

Appends zero to the end of received data.
$FTP_STR
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

ftp.getfile
The method retrieves files from the FTP server.
method uint ftp.getfile (
str srcname,
str destname,

uint flag
)
Parameters
srcname The dow nloaded file name.
destname A new file name on user's machine.
flag Flags.
$FTP_BINARY A binary file is dow nloaded.
SFTP_TEXT A text file is dow nloaded. This is a default mode.

Proceeds w ith retrieving.
$FTP_CONTINUE

SFTP_SETTIME Sets the same file times as on the FTP server.
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
ETP

Page 305

ftp.getsize
Retrieves the file size from the FTP server.
method uint ftp.getsize (
str name,
uint psize

)

Parameters
name Filename.
psize A pointer to uint value is used to store the file size.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
ETP

Page 306

ftp.gettime
Retrieves the file time. Retrieves last w rite times for the file on the FTP server.
method uint ftp.gettime (
str name,
datetime dt
)

Parameters
name Filename.
dt The variable of datetime type is used to retrieve the file time.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
ETP

Page 307

ftp.lastresponse
The last response from the FTP server. The method returns the last response from the FTP server.
method str ftp.lastresponse (

str out

)
Parameters
out Result string.

Return value

Returns the parameter out.

Related links
e FIP

Page 308

ftp.list

List of files. The method retrieves a list of files and directories from the FTP server.

method uint ftp.list (

str data,
str mode
)
Parameters
1ist Result string.
cmd The command is used to retrieve a list of files.
"LIST" Returns a list of files in the format of the LIST command.
"NLST" Returns a list of filenames w ith no other information.
"MLSD" Returns a list of files in the format of the MLSD command.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FTP

Page 309

ftp.open
Establishes an FTP connection. This method establishes an FTP connection w ith the server. This method must be called before
other methods dealing w ith the FTP server are called.
method uint ftp.open (
str url,
str user,
str password,
uint flag,
uint notify

)

Parameters

url The name or address of the FTP server.
user A user name. If the string is empty, anonymous connections are used.
password A user passw ord. If the connection is anonymous, your e-mail address is required.
flag Connection flags.

$FTP_ANONYM Anonymous connection.

$FTP_PASV Establishes a connection in passive mode.
notify Function is used to receive notification messages. This parameter can be zero.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 310

ftp.putfile
Stores a file on the FTP server. This method is used to upload the required file from the remote host to the FTP server.
method uint ftp.putfile (

str srcname,
str destname,

uint flag
)
Parameters
srcnam The name of the required source file.
e
destna The name of a file stored on the FTP server.
me
flag Flags. If the flag of the binary or text mode is not specified, the method makes effort to determine a file type.
$FTP_BINARY A binary file is uploaded.
$FTP_TEXT A text file is uploaded.
$FTP_CONTINUE To proceed w ith file uploading.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FTP

Page 311

ftp.rename

Renames a file. This method renames a file or directory stored on the FTP server.

method uint ftp.rename (
str from,

str to
)
Parameters
from The current name of the file or directory.
to A new name.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
ETP

Page 312

ftp.setattrib

Sets the attributes. This method sets the attributes for the file or the directory.

method uint ftp.setattrib (
str name,
uint mode

)

Parameters
name The name of a file or directory.
mode The attributes for the file.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
ETP

Page 313

ftp.setcurdir
Sets the current directory. This method sets a new current directory.

method uint ftp.setcurdir (
str dirname

)
Parameters
dirname The name of a new directory.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e FIP

Page 314

Gentee API

There is an option for softw are engineers to run programs in Gentee in their ow n applications. To do that, it is enough to connect
the gentee.dll file. It contains several importable functions, w hich are responsible for compilation and execution of the programs.

Types
gentee_call Call the function from the bytecode.
gentee_compile Program compilation.
gentee_deinit End of w orking w ith gentee.
gentee_getid Get the object's identifier by its name.
gentee_init Initialization of gentee.
gentee_load Load and launch the bytecode.
gentee_ptr Get Gentee structures.
gentee_set This function specifies some gentee parameters.
Types
gentee The main structure of gentee engine.
com pileinfo The structure for the using in gentee_compile function.
optimize The structure for the using in compileinfo structure.

Page 315

gentee_call
Call the function from the bytecode. The bytecode should be previously loaded w ith the gentee_load or gentee_compile functions.

uint CDECLCALL gentee call (
uint ld/
puint result,

)
Parameters
id The identifier of the called object. Can be obtained by gentee_getid function.

result Pointer to the memory space, to w hich the result will be written. It can be the pointer to uint, long or double.
Required parameters of the function.
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
° Gentee AP

Page 316

gentee_compile
Program compilation. This function allow s to compile and run programs in Gentee.
uint STDCALL gentee compile (
pcompileinfo compinit
)

Parameters
compinit The pointer to compileinfo structure w ith the specified compiling options.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
° Gentee AP

Page 317

gentee_deinit
End of w orking w ith gentee.dIl. This function should be called w hen the w ork w ith Gentee is finished.

uint STDCALL gentee_deinit(void)
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
o Gentee AP

Page 318

gentee_getid
Get the object's identifier by its name.
uint CDECLCALL gentee getid (

pubyte name,
uint count,

)

Parameters
nam The name of the object. If you w ant to find a method then use '@' at the beginning of the name. For example, "
e @mymethod". If you w ant to find an operator then use '# at the beginning of the name. For example, "#+=".
cou The count of the follow ing parameters. If you w ant to find any object w ith the defined name then specify the
nt follow ing flag.

GID_ANYOBJ Find any object

Specify the sequence of the type's identifiers of the parameters. If the parameter of the function has "of" subtype
then specify it in the HIWORD of the value.

Return value

Returns objects identifier or 0, if the object w as not found.

Related links

Gentee AP

Page 319

gentee_init

Initialization of gentee.dll. This function should be called before beginning to w ork w ith Gentee.

uint STDCALL gentee_init (
uint flags

)

Parameters

flags Flags.
G_CONSOLE
G_SILENT
G_CHARPRN
G_ASM

G_TMPRAND
Return value

Console application.
Don't display any service messages.

Print Window s characters.

Run-time converting a bytecode to assembler.

Random name of t temporary directory.

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Gentee API

Page 320

gentee_load

Load and launch the bytecode. This function loads the bytecode from the file or the memory and launch it if it is required. You can

create the bytecode w ith gentee_compile function.

uint STDCALL

gentee_ load (

pubyte bytecode,

uint flag
)
Parameters
bytecod
e

flag

Return value

The pointer to the bytecode or the filename of .ge file.

Flags.
GLOAD_ARGS Get command line arguments
GLOAD_FILE Read file to load the bytecode. The bytecode is name of the loading file

GLOAD_RUN Load <entry> functions and run <main> function.

The result of the executed bytecode if GLOAD_RUN w as defined.

Related links
Gentee API

Page 321

gentee_ptr
Get Gentee structures. This function returns pointers to global Gentee structures.

pvoid STDCALL gentee ptr (
uint par

)

Parameters
par The identifier of the parameter.
GPTR_GENTEE Pointer to gentee structure. See gentee.
GPTR_VM Pointer to vm structure
GPTR_COMPILE Pointer to compile structure
GPTR_CALL Pointer to gentee_call function

Return value

The pointer to according global Gentee structure.

Related links
° Gentee AP

Page 322

gentee_set

This function specifies some gentee parameters.

uint STDCALL gentee_ set (
uint state,

pvoid val
)

Parameters

state The identifier of the parameter.
GSET_TEMPDIR Specify the custom temporary directory
GSET_PRINT Specify the custom print function
GSET_MESSAGE Specify the custom message function
GSET_EXPORT Specify the custom export function
GSET_ARGS Specify the command-line arguments
GSET_FLAG Specify flags
GSET_DEBUG Specify the custom debug function
GSET_GETCH Specify the custom getch function

val The new value of the parameter.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
o Gentee AP

Page 323

gentee

The main structure of gentee engine.

typedef struct
{
uint flags;
uint multib;
uint tempid;
str tempdir;

uint tempfile;,
printfunc print;
getchfunc getch;,
messagefunc message;
exportfunc export;
debugfunc debug;

pubyte args;

} gentee, *pgentee;

Members
flags

multib
tempid
tempdir
tempfile
print
getch
message
export
debug
args
Related links
e Gentee API

Flags.
G_CONSOLE
G_SILENT
G_CHARPRN
G_ASM
G_TMPRAND

Console application.
Don't display any service messages.

Print Window s characters.

Run-time converting a bytecode to assembler.

Random name of the temporary directory.

1 if the current page is tw o-bytes code page

The indetifier of the temporary directory.

The temporary directory

The handle of the file for locking tempdir

The custom print function

The custom getch and scan function

The custom message function

The custom export function

The custom debug function

Command -line arguments. arg1 0 arg2 00

Page 324

compileinfo
The structure for the using in gentee_compile function.

typedef struct

{

pubyte input;
uint flag;
pubyte libdirs;
pubyte include;
pubyte defargs;
pubyte output;

pvoid h

thread;,

uint result;,

optimize opti;

} compileinfo,

Members
input
flag

1ibdi
rs
inclu
de
defar
gs
outpu
t
hthre
ad
resul

t

opti

Related links

Gentee API

* pcompileinfo;

The Gentee filename. You can specify the Gentee source if the flag CMPL_SRC is defined.

Compile flags.
CMPL_SRC
CMPL_NORUN
CMPL_GE
CMPL_LINE
CMPL_DEBUG
CMPL_THREAD
CMPL_NOWAIT
CMPL_OPTIMIZE
CMPL_NOCLEAR

CMPL_ASM

Specify if compileinfo.input is Gentee source

Don't run anything after the compilation.

Create GE file

Proceed #! at the first string

Compilation w ith the debug information

Compilation in the thread

Do not w ait for the end of the compilation. Use w ith CMPL_THREAD only.
Optimize the output GE file.

Do not clear existing objects in the virtual machine.

Convert the bytecode to assembler code.

Folders for searching files: name1 0 name2 0 ... 00. It may be NULL.

Include files: name1 0 name2 0 ... 00. These files w ill be compiled at the beginning of the compilation process. It

may be NULL.

Define arguments: name1 0 name2 0 ... 00. You can specify additional macro definitions. For example,

MYMODE = 10. In this case, you can use $MYMODE in the Gentee program. It may be NULL.

Ouput filename for GE. In default, .ge file is created in the same folder as .g main file. You can specify any
path and name for the output bytecode file. You must specify CMPL_GE flag to create the bytecode file.

The result handle of the thread if you specified CMPL_THREAD | CMPL_NOWAIT.

Result of the program if it w as executed.

Optimize structure. It is used if flag CMPL_OPTIMIZE is defined.

Page 325

optimize
The structure for the using in compileinfo structure.

typedef struct

{
uint flag;
pubyte nameson;
pubyte avoidon;

} optimize, * poptimize;

Members
flag Flags of the optimization.
OPTI_DEFINE Delete 'define' objects.
OPTI_NAME Delete names of objects.
OPTI_AVOID Delete not used objects.
OPTI_MAIN Leave only one main function w ith OPTI_AVOID.
nameson Don't delete names w ith the follow ing w ildcards divided by 0 if OPTI_NAME specified

avoidon Don't delete objects w ith the follow ing w ildcards divided by 0 if OPTI_AVOID specified

Related links
° Gentee AP

Page 326

Hash

Hash (Associative array). Variables of the hash type allow you to w ork w ith associative arrays or hash tables. Each item in such
an array corresponds to a unique key string. ltems are addresses by specifying the corresponding key strings.

Operators
Methods

Type
Operators
hash of type
*hash
hash[name]

foreach var,hash

Methods
hash.clear
hash.create
hash.del
hash.find
hash.ignorecase

hash.sethashsize

Type

Specifying the type of items.
Get the count of items.
Getting an item by a key string.

Foreach operator.

Clear a hash.

Creating an item w ith this key.
Delete an item w ith this key.
Find an item w ith this key.
Ignoring the letter case of keys.

Set the size of a value table.

hash The main structure of the hash.

Page 327

hash of type

Specifying the type of items. You can specify of type w hen you describe hash variable. In default, the type of the items is uint.

method hash.oftype (

uint itype
)
Related links
e Hash

Page 328

* hash
Get the count of items.

operator uint * (
hash left

)

Return value

Count of hash items.

Related links
e Hash

Page 329

hash[name]
Getting an item by a key string. In case there is no item, it will be created automatically.
method uint hash.index (

str key

)
Return value

The ["key"] item of the hash.
Related links

e Hash

Page 330

foreach var,hash
e foreach variable.hash {...}

e foreach variable,hash.keys {...}

Foreach operator. You can use foreach operator to look over all items of the hash. Variable is a pointer to the hash item.

foreach variable,hash {...}

foreach var,hash.keys

You can use foreach operator to look over all keys of the hash.

foreach variable,hash.keys {...}
Related links
e Hash

Page 331

hash.clear
Clear a hash. The method removes all items from the hash.

method hash.clear()
Related links

e Hash

Page 332

hash.create

Creating an item w ith this key. If an item w ith this key already exists, it will be initiated again. Items are created automatically w hen
they are addressed as array items for the first time - hashname["key string"].

method uint hash.create (
str key

)
Parameters

key
Return value

The pointer to the created item is returned.

Related links
Hash

Key value.

Page 333

hash.del

Delete an item w ith this key.

method uint hash.del (
str key

)
Parameters
key Key value.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Hash

Page 334

hash.find

Find an item w ith this key.

method uint hash.find (
str key

)
Parameters
key Key value.

Return value

Either the pointer to the found item is returned or 0 is returned if there is no item w ith this key.

Related links

e Hash

Page 335

hash.ignorecase

Ignoring the letter case of keys. Work w ith the keys of this hash table w ithout taking into account the case of letters. The method
must be called before any items are added.

method uint hash.ignorecase
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Hash

Page 336

hash.sethashsize

Set the size of a value table. Set the size of the value table for searching for keys. The method must be called before any items are
added. The parameter contains the pow er of tw o for calculating the size of the table since the number of items must be the pow er
of tw 0. By default, the size of a table is 4096 items.
method uint hash.sethashsize (

uint power

)
Parameters
power The pow er of tw o for calculating the size of the table.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Hash

Page 337

hash

The main structure of the hash.

type hash

{

}

arr hashes
uint itype
uint isize
uint count

uint igncase

hkeys keys

Members
hashes
itype
isize

count

igncase

keys
Related links

Hash

Array of hash values. Pointers to hashkey.
The type of the items

The type of the item.

The count of items.

Equals 1 if the hash ignores case sensetive.

The structure for looking over keys

Page 338

HTTP

HTTP protocol. You must call inet_init function before using this library. For using this library, it is required to specify the file http.g
(from lib\http subfolder) w ith include command.

include : $"...\gentee\lib\http\http.g"
Common internet functions
URL strings
http_get Getting data via the HTTP protocol.
http_getfile Dow nloading a file via the HTTP protocol.
http_head Getting a header via the HTTP protocol.
http_post Sending data via the HTTP protocol.

Common internet functions

inet_close Closing the library.
inet_error Getting an error code.
inet_init Library initialization.
inet_proxy Using a proxy server.
inet_proxyenable Enabling/disabling a proxy server.
inetnotify_func Message handling function.
URL strings

str.iencoding Recoding a string.

str.ihead Getting a header.

str.ihttpinfo Processing a header.

str.iurl The method is used to parse a URL address.

Page 339

http_get

Getting data via the HTTP protocol. The method sends a GET request to the specified URL and w rites data it receives to the
databuf buffer.

func uint http get (
str url,
buf databuf,
uint notify,
uint flag,
str otherpars

)

Parameters
url The URL address data is received from.
datab The buffer for getting data.
uf
notif The function for getting notifications. It can be 0.
y
flag Flags.

$SHTTPF_REDIRECT If redirection is used, dow nload from the new address.
$SHTTPF_STR Add 0 to databuf after data is received. Use this flag if databuf is a string.
$HTTPF_CONTINUE If the file already exists, resume dow nloading it. It is valid for http_getfile.

SHTTPF_SETTIME Set the same time for the file as it is on the server. It is valid for http_getfile.
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e HTTP

Page 340

http_getfile
Dow nloading a file via the HTTP protocol. The method sends a GET request to the specified URL and w rites data it receives to the
specified file.
func uint http getfile (
str url,
str filename,
uint notify,

uint flag
)
Parameters
url The URL address for dow nloading.
filena The name of the file for w riting.
me
notify The function for getting notifications. It can be 0.
flag Flags.

$HTTPF_REDIRECT If redirection is used, dow nload from the new address.
SHTTPF_STR Add 0 to databuf after data is received. Use this flag if databuf is a string.
SHTTPF_CONTINUE If the file already exists, resume dow nloading it. It is valid for http_getfile.

$HTTPF_SETTIME Set the same time for the file as it is on the server. It is valid for http_getfile.
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e HTTP

Page 341

http_head

Getting a header via the HTTP protocol. The method sends a HEAD request to the specified URL address and partially parses the
received data.
func uint http_head (
str url,
str head,
httpinfo hi
)

Parameters

url The URL address for getting the header.

head The string for getting the text of the header.

hi The variable of the httpinfo type for getting information about the header.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
HTTP

Page 342

http_post

Sending data via the HTTP protocol. The method sends a POST request w ith the specified string to the specified URL address. It is
used to fill out forms automatically.
func uint http post (

str url,

str data,

str result,

uint notify,

str otherpars

)

Parameters
url The URL address w here the data will be sent.
data The string w ith the data being sent. Before the data is sent, request strings w ith parameters should be recoded w ith

the help of the str.iencoding method.
result The string for getting a response from the server.

notify The function for getting notifications. It can be 0.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
HTTP

Page 343

INI File

INI files. This library allow s you to w ork w ith ini files. Variables of the ini type allow you to w ork w ith them. For using this library, it
is required to specify the file ini.g (from lib\ini subfolder) w ith include command.

include
Methods
Functions

Methods
ini.delkey
ini.delsection
ini.getnum
ini.getvalue
ini.keys
ini.read
ini.sections
ini.setnum
ini.setvalue

ini.write
Functions

inigetval

inisetval

$"...\gentee\lib\ini\ini.g"

Deleting a key.

Deleting a section.

Get the numerical value of an entry.
Get the value of an entry.

Get the list of entries in this section.
Read data from a file.

Getting the list of sections.

Write the numerical value of an entry.
Write the value of an entry.

Save data into an ini file.

Get the value of an entry from an ini file.

Write the value of an entry into an ini file.

Page 344

ini.delkey
Deleting a key.

method ini.delkey (
str section,

str key
)
Parameters
section Section name.
key The name of the entry being deleted.
Related links
° INI File

Page 345

ini.delsection
Deleting a section.

method ini.delsection (
str section

)
Parameters
section The name of the section being deleted.

Related links
e INIFie

Page 346

ini.getnum
Get the numerical value of an entry.

method uint ini.getnum (
str section,
str key,
uint defvalue

)

Parameters

section Section name.

key Key name.

defval The value to be assigned if the entry is not found.

Return value

The numerical value of the key.

Related links
INI File

Page 347

ini.getvalue
Get the value of an entry.

method uint ini.getvalue (
str section,
str key,
str value,
str defvalue

)

Parameters

section Section name.

key Key name.

value The string for getting the value.

defval The value to be assigned if the entry is not found.

Return value

Returns 1 if the entry is found and 0 otherw ise.

Related links
INI File

Page 348

ini.keys
Get the list of entries in this section. All entries wiill be written into an array of strings.
method arrstr ini.keys (

str section,

arrstr ret

)

Parameters
section Section name.
ret The array of strings the names of entries will be w ritten to.

Return value

Returns the parameter ret.

Related links
e INIFile

Page 349

ini.read
Read data from a file.

method ini.read (
str filename
)
Parameters
filename The name of the ini file.
Related links
e INIFie

Page 350

ini.sections
Getting the list of sections. All sections wiill be w ritten into an array of strings.
method arrstr ini.sections (

arrstr ret

)
Parameters
ret The array of strings the names of sections will be w ritten to.

Return value
Returns the parameter ret.

Related links
e INIFile

Page 351

ini.sethum
Write the numerical value of an entry.

method ini.setnum (
str section,
str key,
uint value

)

Parameters

section Section name.

key Key name.

value The value of the entry being w ritten.

Related links
INI File

Page 352

ini.setvalue
Write the value of an entry.

method ini.setvalue
str section,
str key,
str value

)

Parameters

section

key

value

Related links
INI File

(

Section name.

Key name.

The value of the entry being w ritten.

Page 353

ini.write
Save data into an ini file.

method uint ini.write (
str filename

)
Parameters
filename The name of the ini file.

Return value
Returns the size of the w ritten data.

Related links
e INIFile

Page 354

inigetval

Get the value of an entry from an ini file.

func str inigetval (

str

str

str

str

str
)

ininame,
section,
key,
value,
defval

Parameters

ininame

section Section name.

key
value
defval

Key name.

The string for w riting the value.

The value that will be inserted in case of an error or if there is not such an entry.

Return value

Returns the parameter value.

Related links

INI File

The name of the ini file.

Page 355

inisetval

Write the value of an entry into an ini file.

func uint inisetval

str ininame,
str section,
str key,

str value

)
Parameters
ininame
section
key

value
Return value
#Ing\retf

Related links
INI File

(

The name of the ini file.
Section name.

Key name.

The value of the entry being w ritten.

Page 356

Keyboard

These functions are used to emulate the w ork of the keyboard. For using this library, it is required to specify the file keyboard.g
(from lib\keyboard subfolder) w ith include command.

include : $"...\gentee\lib\keyboard\keyboard.g"
sendstr Types a string on the keyboard.

sendvkey Pressing a key.

Page 357

sendstr

Types a string on the keyboard.

func uint sendstr (
str input

)

Parameters
data The string to be typed on the keyboard.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Keyboard

Page 358

sendvkey
Pressing a key. Press a key alone or together w ith Shift, Ctrl, Alt.

func uint sendvkey (
ushort vkey,

uint flag
)
Parameters
vkey Virtual key code.
flag Flags for pressing additional keys.
$SVK_SHIFT Shift is pressed.
$SVK_ALT Alt is pressed.
$SVK_CONTROL Ctrl is pressed.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Keyboard

Page 359

Math

Mathematical functions.

abs The absolute value for integers |x|.

acos Calculating the arc cosine.

asin Calculating the arc sine.

atan Calculating the arc tangent.

ceil Smallest double integer not less than given.
cos Calculating the cosine.

exp Exponential function.

fabs The absolute value for double |x|.

floor Largest double integer not greater than given.
In Natural logarithm.

log Common logarithm.

m odf Splitting into w hole and fractional parts.
pow Raising to the pow er.

sin Calculating the sine.

sqrt Square root.

tan Calculating the tangent.

Page 360

abs
The absolute value for integers |x|.
func uint abs (
int x
)
Parameters

X An integer value.

Return value

The absolute value.

Related links
Math

Page 361

acos
Calculating the arc cosine.
func double acos (

double x

)
Parameters

X A value for calculating the arc cosine.

Return value

The arc cosine of x within the range [0; PI].

Related links
Math

Page 362

asin
Calculating the arc sine.
func double asin (

double x

)
Parameters
X A value for calculating the arc sine.

Return value

The arc cosine of x within the range [-PI/2 ; PI/2].

Related links
Math

Page 363

atan
Calculating the arc tangent.
func double atan (

double x

)
Parameters
X A value for calculating the arc tangent.

Return value

The arc tangent of x within the range [-PI/2 ; PI/2].

Related links
Math

Page 364

ceil

Getting the smallest integer that is greater than or equal to x.

func double ceil (
double x

)
Parameters
X Floating-point value.

Return value

The closest least integer.

Related links
Math

Page 365

COSs
Calculating the cosine.
func double cos (

double x

)
Parameters

X An angle in radians.

Return value

The cosine of x.

Related links
Math

Page 366

exp
Exponential function.
func double exp (

double x

)
Parameters

X A pow er for the number e.

Return value

The number e raised to the pow er of x.

Related links
Math

Page 367

fabs

The absolute value for double |x].

func double fabs (
double x

)

Parameters

X Floating-point value.

Return value

The absolute value.

Related links
Math

Page 368

floor

Getting the largest integer that is less than or equal to x.

func double floor (
double x

)
Parameters
X Floating-point value.

Return value
The closest greatest integer.

Related links
Math

Page 369

In
Natural logarithm.
func double 1ln (

double x

)
Parameters

X Floating-point value.

Return value

The natural logarithm In(x).

Related links
Math

Page 370

log
Common logarithm.
func double log (

double x

)
Parameters

X Floating-point value.

Return value

The common logarithm log10(x).

Related links
Math

Page 371

modf
Splitting into w hole and fractional parts.

func double modf (
double x,
uint y

)

Parameters

X Floating-point value.

v A pointer to double for getting the w hole part.

Return value

The fractional part of x.

Related links
Math

Page 372

pow
Raising to the pow er.

func double pow (

double x,
double y
)
Parameters
X A base.
v A power.

Return value

Raising x to the pow er of y.

Related links
e Math

Page 373

sin

Calculating the sine.

func double sin (
double x

)
Parameters

X An angle in radians.

Return value

The sine of x.

Related links
Math

Page 374

sqrt

Square root.

func double sqgrt (
double x

)
Parameters

X A positive floating-point value.

Return value

The square root of x.

Related links
Math

Page 375

tan

Calculating the tangent.

func double tan (
double x

)
Parameters

X An angle in radians.

Return value

The tangent of x.

Related links
Math

Page 376

Memory

Gentee has ow n memory manager. This overview describes the memory management provided by Gentee. You can allocate and

use memory w ith these functions.

malloc

mcmp

mcopy

mfree

mlen

mmove

mzero

Allocate the memory.
Comparison memory.
Copying memory.
Memory deallocation.
Size till zero.

Move memory.

Filling memory w ith zeros.

Page 377

malloc
Allocate the memory. The function allocates the memory of the specified size.
func uint malloc (
uint size
)

Parameters
size The size of memory space to be allocated.

Return value

The pointer to the allocated memory space or 0 in case of an error.

Related links
e Memory

Page 378

mcmp

Comparison memory. The function compares tw o memory spaces.

func int mcmp (
uint dest,
uint src,

uint len
)
Parameters
dest The pointer to the first memory space.
src The pointer to the second memory space.
Jlen The size being compared.

Return value
0 The spaces are equal.
<0 The first space is smaller.

>0 The second space is smaller.
Related links
Memory

Page 379

mcopy

Copying memory. The function copies data from one memory space into another.

func uint mcopy (
uint dest,
uint src,

uint len
)
Parameters
dest The pointer for the data being copied.
src The pointer to the source of the data being copied.
Jlen The size of the data being copied.

Return value
The pointer to the copied data.

Related links
Memory

Page 380

mfree
Memory deallocation. The function deallocates memory.
func uint mfree (
uint ptr
)

Parameters
ptr The pointer to the memory space to be deallocated.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Memory

Page 381

mlen
Size till zero. Determines the number of bytes till zero.
func uint mlen (

uint data

)
Parameters

data The pointer to a memory space.

Return value
The number of bytes till the zero character.

Related links
Memory

Page 382

mmove

Move memory. The function moves the specified space. The initial and final data may overlap.
func mmove (
uint dest,
uint src,
uint len
)
Parameters
dest The pointer for the data being copied.
src The pointer to the source of the data being copied.
Jlen The size of the data being copied.
Related links
e Memory

Page 383

mzero
Filling memory w ith zeros. The functions zeroes the memory space.

func uint mzero (
uint dest,

uint Ien
)
Parameters
dest The pointer to a memory space.
len The size of the data being zeroed.

Return value

The pointer to the zeroed data.

Related links
e Memory

Page 384

ODBC (SQL)

Data Access (SQL queries) Using ODBC. This library is applied for running SQL queries on a database using ODBC. The queries
w ith parameters are not supported by the current version. Read ODBC description for more details. For using this library, it is
required to specify the file odbc.g (from lib\odbc subfolder) w ith include command.

include
Methods
SQL query methods
Field methods

ODBC description
Methods

odbc.connect
odbc.disconnect
odbc.geterror

odbc.newquery

SQL query methods
odbcquery.active
odbcquery.close
odbcquery.fieldbyname
odbcquery.first
odbcquery.geterror
odbcquery.getrecordcount
odbcquery.last
odbcquery.moveby
odbcquery.next
odbcquery.prior
odbcquery.run

odbcquery.settimeout

Field methods
odbcfield.getbuf
odbcfield.getdatetime
odbcfield.getdouble
odbcfield.getindex
odbcfield.getint
odbcfield.getlong
odbcfield.getname
odbcfield.getnumeric
odbcfield.getstr
odbcfield.gettype

odbcfield.isnull

$"...\gentee\lib\odbc\odbc.g"

A brief description of ODBC library.

Create a database connection.
Disconnect from a database.
Get the last error message.

Create a new ODBC query.

Checks w hether a result set exists after the SQL query execution.
Close a result set.

Find a field based on a specified field name.

Move the cursor to the first record in the result set.

Get the last error message.

Get the total number of records in a result set.

Move the cursor to the last record in the result set.

Move the cursor to a position relative to its current position.
Move the cursor to the next record in the result set.

Move the cursor to the prior record in the result set.

SQL query execution.

Set query timeout.

Gets the field's value as a value of the buf type (the binary data).
Gets the field's value as a value of the datetime type.

Gets the field's value as a floating-point number.

Gets the field index number.

Gets the field's value as an integer.

Get the field's value as a number of the long type.

Gets a field's name.

Gets the field's value as a fixed point number.

Get the field's value as a string of the str type.

Gets a type of the field's value.

Determines if the field contains the NULL value.

Page 385

Page 386

ODBC description

A brief description of ODBC library. The object of the odbc type provides connection to a database. The objects of the
odbcquery type are used to run SQL queries and move the cursor through a result set. This object has got the arr fields[] of
odbcfield array that contains result set fields odbcfield; furthermore, the number of elements of the array equals the number of
the fields.

The objects of the odbcfield type make it possible to get the required information of the field as w ell as the field's value
(depending on the current position of the cursor in the result set).

The sequence of operations for w orking w ith the database:

create an ODBC connection to the database using the odbc.connect method;

create a new ODBC query using the odbc.new query method. Note that severalqueries are likely to be created for one
connection;

run a SQL query using the odbcquery.run method; the query may retrieve the result set (the SELECT command) or no data (the
INSERT command, the UPDATE command etc.);

move the cursor through the result set using the follow ing methods: odbcquery.first, odbcquery.next etc. if necessary. The
access is gained to the fields through the fields array odbcquery.fields[i], w here i - a field number begining from 0, or w ith
the odbcquery.fieldbyname method;

use the odbcfield.getstr method, the odbcfield.getint method etc.in order to get field values;

run the next SQL query after processing if necessary;

disconnect from the database using the ODBC method odbc.disconnect.

There are some peculiarities to keep in mind w hen w orking w ith ODBC drivers:

w hile running a SQL query w ith the help of multiple sequential statements of the "INSERT ..." type, only some of the query
statements are being executed (there can be from 300 to 1000 statements used for the "SQL server" driver) and no error
message is displayed. In this case, you had better divide such queries into several parts;

some types of drivers do not make it possible to calculate the total number of messages received by the SQL query.

Related links
ODBC (SQL)

Page 387

odbc.connect
method uint odbc.connect(str connectstr)

method uint odbc.connect(str dsn, str user, str psw)

Create a database connection. You can connect to a database using a string connection or a DSN name.

The method is called in order to connect to the database w ith the help of the string connection. Use The ODBC connection string
for this purpose, that contains a driver type, a database name and some additional parameters. The example below show s a type
of the string connected to the SQL server: "Driver={SQL Server};Server=MSSQLSERVER;
Database=mydatabase;Trusted_Connection=yes;"
method uint odbc.connect (

str connectstr
)
Parameters
connectstr Connection string.

Return value

Returns 1 if the connection is successful; otherw ise, returns 0.

odbc.connect
This method is used to connect to the database through the previously defined connection (the DSN name).

method uint odbc.connect (

str dsn,
str user,
str psw
)
Parameters
dsn Name of a previously defined connection - DSN.
user User name.
psSw User passw ord.

Return value
Returns 1 if the connection is successful; otherw ise, returns 0.

Related links
ODBC (SQL)

Page 388

odbc.disconnect
Disconnect from a database.

method odbc.disconnect ()
Related links
ODBC (SQL)

Page 389

odbc.geterror

Get the last error message. Gets the message if the last error occured w hile connecting to the database.

method uint odbc.geterror (

str state,
str message

)
Parameters
state

message
Return value

Returns the last error code.

Related links
ODBC (SQL)

This string will contain the current state.

This string will contain an error message.

Page 390

odbc.newquery

Create a new ODBC query. Creates a new ODBC query for the particular ODBC connection. Several queries are likely to be
created for one connection. Queries are created inside the ODBC object and deleted in case of its deletion.

method odbcquery odbc.newquery ()
Return value
A new ODBC query.
Related links
e ODBC (SQL)

Page 391

odbcquery.active

Checks w hether a result set exists after the SQL query execution. If the SQL query of the "SELECT ..." type has been executed
successfully, this method returns nonzero.

method uint odbcquery.active ()
Return value

Returns nonzero if a result set exists.

Related links
e ODBC(SQL)

Page 392

odbcquery.close
Close a result set. Closes a result set. This method is used after the SQL query of the SELECT... type has been executed. While

calling the odbcquery.run method, the given method is automatically called.

method odbcquery.close ()
Related links
e ODBC (SQL)

Page 393

odbcquery.fieldbyname
Find a field based on a specified field name.
method odbcfield odbcquery.fieldbyname (

str name

)
Parameters
name Field name.

Return value

Returns the field or zero if fields w ith the same name are not found.

Related links
ODBC (SQL)

Page 394

odbcquery.first

Move the cursor to the first record in the result set.

method uint odbcquery.first ()
Return value

If the cursor has been moved, it returns nonzero.

Related links
ODBC (SQL)

Page 395

odbcquery.geterror
Get the last error message. Gets the message if the last error occured w hile running the SQL query.
method uint odbcquery.geterror (

str state,

str message

)

Parameters
state This string will contain the current state.
message This string will contain an error message.

Return value

Returns the last error code.

Related links
e ODBC(SQL)

Page 396

odbcquery.getrecordcount

Get the total number of records in a result set. Gets the total number of records in a result set w hen the SQL query of the
"SELECT ..." type has been executed.

method uint odbcquery.getrecordcount ()
Return value

Returns the the total number of records; if the total number of records is not determined, it returns -1.

Related links
e ODBC(SQL)

Page 397

odbcquery.last

Move the cursor to the last record in the result set.

method uint odbcquery.last()
Return value

If the cursor has been moved, it returns nonzero.

Related links
ODBC (SQL)

Page 398

odbcquery.moveby
Move the cursor to a position relative to its current position.

method uint odbcquery.moveby (
int off

)
Parameters
off Indicates the number of records to move the cursor. If the number is negative, the cursor is moved backw ard.

Return value
If the cursor has been moved, it returns nonzero.

Related links
e ODBC(SQL)

Page 399

odbcquery.next
Move the cursor to the next record in the result set.

method uint odbcquery.next ()
Return value

If the cursor has been moved, it returns nonzero; otherw ise, it returns zero. If the current record is the last, it returns zero.

Related links
e ODBC(SQL)

Page 400

odbcquery.prior

Move the cursor to the prior record in the result set.

method uint odbcquery.prior ()
Return value

If the cursor has been moved, it returns nonzero.

Related links
ODBC (SQL)

Page 401

odbcquery.run
SQL query execution.

method uint odbcquery.run (
str sqglstr
)
Parameters
sqglstr String that contains the SQL query.
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e ODBC(SQL)

Page 402

odbcquery.settimeout
Set query timeout. Sets the number of seconds to w ait for a SQL query execution.

method odbcquery.settimeout (
uint timeout
)
Parameters
timeout The number of seconds to w ait for a SQL query execution. If it is equal to 0, then there is no timeout.
Related links
e ODBC(SQL)

Page 403

odbcfield.getbuf

Gets the field's value as a value of the buf type (the binary data). This method is applied for fields w ith binary data.
method buf odbcfield.getbuf (
buf dest

)
Parameters
dest Result buf object.

Return value

Returns the parameter dest.

Related links
e ODBC(SQL)

Page 404

odbcfield.getdatetime
Gets the field's value as a value of the datetime type. This method is applied for fields that contain date and/or time.

method datetime odbcfield.getdatetime (
datetime dt

)

Parameters

dt Result datetime object.

Return value

Returns the parameter dt.

Related links
e ODBC(SQL)

Page 405

odbcfield.getdouble

Gets the field's value as a floating-point number. This method is applied for fields that contain floating-point numbers.

method double odbcfield.getdouble ()
Return value

Returns the field's value.

Related links
e ODBC(SQL)

Page 406

odbcfield.getindex
Gets the field index number.

method uint odbcfield.getindex ()
Return value

Field index number.

Related links
e ODBC(SQL)

Page 407

odbcfield.getint
e method int odbcfield.getint()
e method uint odbcfield.getuint()

Gets the field's value as an integer. This method is applied for fields that contain integers (the storage size is up to 4 bytes).

method int odbcfield.getint()
Return value

Returns the field's value.

odbcfield.getuint

Gets the field's value as an unsigned integer. This method is applied for fields that contain integers (the storage size is up to 4
bytes).

method uint odbcfield.getuint ()
Return value

Returns the field's value.

Related links
e ODBC(SQL)

Page 408

odbcfield.getlong

e method long odbcfield.getlong()

e method ulong odbcfield.getulong()

Get the field's value as a number of the long type. This method is applied for fields that contain long integers (8 bytes).

method long odbcfield.getlong()
Return value

Returns the field's value.

odbcfield.getulong
Get the field's value as a number of the ulong type. This method is applied for fields that contain long integers (8 bytes).

method ulong odbcfield.getulong ()
Return value

Returns the field's value.

Related links
e ODBC(SQL)

Page 409

odbcfield.gethame
Gets a field's name.
method str odbcfield.getname (

str result

)
Parameters
result Result string.

Return value

Returns the parameter result.

Related links
e ODBC(SQL)

Page 410

odbcfield.gethumeric

Gets the field's value as a fixed point number. This method is applied for fields that contain fixed point numbers. The structure is
applied for data of this type, as follow s:

type numeric {
long val
uint scale

}

The val field contains the integer representation of a number, and the scale field indicates how many times val is divided by 10 in
order to get a real number (a precision number).
method numeric odbcfield.getnumeric (
numeric num
)
Parameters
num Result numeric structure.
Return value

Returns the parameter num.

Related links
e ODBC(SQL)

Page 411

odbcfield.getstr

Get the field's value as a string of the str type. This method is applied for fields that contain a string, a date, time and numeric
fields.

method str odbcfield.getstr (
str dest

)
Parameters
dest Result str object.

Return value

Returns the parameter dest.

Related links
e ODBC(SQL)

Page 412

odbcfield.gettype

Gets a type of the field's value. Returns the identifier of one of the follow ing types: buf, str, int, long, numeric, double,
datetime.

method uint odbcfield.gettype ()
Return value

Type identifier.

Related links
e ODBC(SQL)

Page 413

odbcfield.isnull
Determines if the field contains the NULL value.

method uint odbcfield.isnull ()
Return value

Returns nonzero, if the field contains the NULL value; otherw ise, it returns zero.

Related links
e ODBC(SQL)

Page 414

Process

Process, shell, arguments and environment functions.

argc Get the number of parameters.

argv Get a parameter.

exit Exit the current program.

getenv Get an environment variable.

process Starting a process.

setenv Set a value of an environment variable.

shell Launch or open a file in the associated application.

Page 415

argc
Get the number of parameters. The function returns the count of parameters in the command line.

func uint argc()
Return value

The number of parameters passed in the command line.

Related links

e Process

Page 416

argv
Get a parameter. The function returns the parameter of the command line.
func str argv (

str ret,

uint num

)

Parameters
ret A variable to w rite the return value to.
num The number of the parameter to be obtained beginning from 1.

Return value

Returns the parameter ret.

Related links

Process

Page 417

exit
Exit the current program.

func exit (
uint code

)

Parameters
code A return code or the results of the w ork of the program.
Related links

e Process

Page 418

getenv

Get an environment variable.

func str getenv (
str varname,

str ret
)
Parameters
varname Environment variable name.
ret String for getting the value.

Return value

Returns the parameter ret.

Related links

Process

Page 419

process

Starting a process.

func uint process (
str cmdline,
str workdir,
uint result,
uint state

)
Parameters
cmdline The command line.

workdir The working directory. It can be 0->str.
result The pointer to uint for getting the result. If 0, the function will not w ait until the process finishes its w ork.
Return value

1 if the calling process w as successful; otherw ise 0.

Related links

e Process

Page 420

setenv

Set a value of an environment variable. The function adds new environment variable or modifies the value of the existing
environment variable. New values wiill be valid only in the current process.

func uint setenv (

str varname,
str varvalue

)

Parameters
varname Environment variable name.
varvalue A new value of the environment variable.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Process

Page 421

shell

Launch or open a file in the associated application.
func shell (
str name

)
Parameters

name Filename.

Related links

Process

Page 422

Registry

Working w ith the Registry. This library allow s you to w ork w ith the Window s Registry. For using this library, it is required to

specify the file registry.g (from lib\registry subfolder) w ith include command.

include
Functions
Methods

Functions
regdelkey
regdelvalue
reggetmultistr
reggetnum
regkeys
regsetmultistr
regsetnum
regvaltype
regvalues

regverify

Methods

buf.regget
buf.regset
str.regget

str.regset

$"...\gentee\lib\registry\registry.g"

Deleting a registry key.

Deleting the value of a key.

Getting a string sequence.

Get the numerical value of a registry key.
Getting the list of keys.

Writing a string sequence.

Write a number as a registry key value.
Get the type of a registry key value.
Getting the list of values in a key.

Creating missing keys.

Getting a value.
Writing a value.
Getting a value.

Write a string as a registry key value.

Page 423

regdelkey
Deleting a registry key.

func uint regdelkey (

uint root,
str subkey

)
Parameters
root

subkey
Return value

A root key.
$HKEY_CLASSES_ROOT
$HKEY_CURRENT_USER
$HKEY_LOCAL_MACHINE

$HKEY_USERS
The name of the registry key being deleted.

Classes Root.

Current user's settings.

Local machine settings.

All users' settings

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Registry

Page 424

regdelvalue

Deleting the value of a key.

func uint regdelvalue (
uint root,
str subkey,
str value

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

value The name of the value being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Registry

Page 425

reggetmultistr
Getting a string sequence. Get the value of a registry key of the $REG_MULTISZ type into a string array.

func arrstr reggetmultistr (
uint root,
str subkey,
str valname,
arrstr val

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname A name of the specified key value.

val The array strings are w ritten to.

Return value

Returns the parameter val.

Related links
° Registry

Page 426

reggetnum
func uint reggetnum(_uint root, str subkey, str valname)

func uint reggetnum(_uint root, str subkey, str valname, uint defval)

Get the numerical value of a registry key.

func uint reggetnum (
uint root,
str subkey,
str valname

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT
$HKEY_CURRENT_USER
$HKEY_LOCAL_MACHINE
$HKEY_USERS

subkey A name of the registry key.

valname A name of the specified key value.

Return value

A numerical value is returned.

Classes Root.

Current user's settings.

Local machine settings.

All users' settings

reggetnum

Get the numerical value of a registry key.

func uint reggetnum (
uint root,
str subkey,
str valname,
uint defval

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT
$HKEY_CURRENT_USER
$HKEY_LOCAL_MACHINE
$HKEY_USERS

subkey A name of the registry key.

valname A name of the specified key value.

defval The default number in case there is no value.

Return value
A numerical value is returned.

Related links
Registry

Classes Root.

Current user's settings.

Local machine settings.

All users' settings

Page 427

regkeys
Getting the list of keys.

func uint regkeys (
uint root,
str subkey,
arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

ret The array the names of the keys will be w ritten to.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Registry

Page 428

regsetmultistr

Writing a string sequence. Write an array of strings as a value of a registry key of the $REG_MULTISZ type. If there is no key, it
w ill be created.
func uint regsetmultistr (

uint root,

str subkey,

str valname,

arrstr val,

arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname The name of the value being w ritten.

val The arrays of strings being w ritten.

ret The array of strings all the created keys wiill be w ritten to. It can be 0.

Return value
0 No data has been w ritten.
1 The value of the key w as created during the w riting process.

2 Datais written into the existing value.
Related links
e Registry

Page 429

regsetnum
Write a number as a registry key value. If there is no key, it will be created.

func uint regsetnum (
uint root,
str subkey,
str valname,
uint value,
arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname The name of the value being w ritten.

value The number being w ritten.

ret The array of strings all the created keys wiill be written to. It can be 0.

Return value
0 No data has been w ritten.
1 The value of the key w as created during the w riting process.

2 Datais written into the existing value.
Related links
Registry

Page 430

regvaltype

Get the type of a registry key value.

func uint regvaltype (

uint root,
str subkey,
str valname

)
Parameters
root

subkey
valname
Return value

0 is returned if the type is not determined or there is no such value. Besides, the follow ing values are possible:

$REG_NONE
$REG_SZ
$REG_EXPAND_SZ
$REG_BINARY
$REG_DWORD

$REG_MULTI_SZ
Related links
Registry

A root key.

$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

A name of the registry key.

The name of the key value the type of w hich is being determined.

Unknow n.

String.

Expanded string. String w ith environment variables.
Binary data.

Number.

String sequence.

Page 431

regvalues
Getting the list of values in a key.

func uint regvalues (
uint root,
str subkey,
arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

ret The array the names of values in the keys w ill be w ritten to.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Registry

Page 432

regverify
Creating missing keys. Check if there is a certain key in the registry and create it if it is not there.

func uint regverify (
uint root,
str subkey,
arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey The name of the registry key being checked.

ret The array of strings all the created keys will be written to. It can be 0.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
Registry

Page 433

buf.regget

Getting a value. This method w rites the value of a registry key into a Buffer object.

method buf buf.regget (
uint root,
str subkey,
str valname,
uint regtype

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname A name of the specified key value.

regtype The pointer to uint the type of this value will be w ritten to. It can be 0.

Return value
Returns the object w hich method has been called.

Related links
Registry

Page 434

buf.regset

Writing a value. Write the data of an buf object as registry key value. If there is no key, it will be created.

method uint buf.regset (
uint root,
str subkey,
str valname,
uint regtype,
arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname The name of the value being w ritten.

regtype Value type.
$REG_NONE Unknow n.
$REG_SZ String.
$REG_EXPAND_SZ Expanded string. String w ith environment variables.
$REG_BINARY Binary data.
$REG_DWORD Number.
$REG_MULTI_SZ String sequence.

ret The array of strings all the created keys wiill be written to. It can be 0.

Return value

0 No data has been w ritten.

1 The value of the key w as created during the w riting process.

2 Datais written into the existing value.
Related links
e Registry

Page 435

str.regget

method str str.regget(uint root, str subkey, str valname)

method str str.regget(uint root, str subkey, str valname, str defval)

Getting a value. This method w rites the value of a registry key into a String object.

method str str.regget (
uint root,
str subkey,
str valname

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname A name of the specified key value.

Return value

Returns the object w hich method has been called.

str.regget
This method w rites the value of a registry key into a String object.
method str str.regget (

uint root,

str subkey,

str valname,

str defval
)
Parameters
root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings
subkey A name of the registry key.
valname A name of the specified key value.
defval The default string in case there is no value.

Return value
Returns the object w hich method has been called.

Related links
Registry

Page 436

str.regset
method uint str.regset(uint root, str subkey, str valname, arrstr ret)
method uint str.regset(uint root, str subkey, str valname)

Write a string as a registry key value. If there is no key, it will be created.

method uint str.regset (
uint root,
str subkey,
str valname,
arrstr ret

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname The name of the value being w ritten.

ret The array of strings all the created keys wiill be written to. It can be 0.

Return value
0 No data has been w ritten.
1 The value of the key w as created during the w riting process.

2 Datais written into the existing value.

str.regset

Write a string as a registry key value. If there is no key, it will be created.

method uint str.regset (
uint root,
str subkey,
str valname

)

Parameters

root A root key.
$HKEY_CLASSES_ROOT Classes Root.
$HKEY_CURRENT_USER Current user's settings.
$HKEY_LOCAL_MACHINE Local machine settings.
$HKEY_USERS All users' settings

subkey A name of the registry key.

valname The name of the value being w ritten.

Return value
0 No data has been w ritten.
1 The value of the key w as created during the w riting process.

2 Datais written into the existing value.

Related links
Registry

Page 437

Socket

Sockets and common internet functions. You must call inet_init function before using this library. For using this library, it is required

to specify the file internet.g (from lib\socket subfolder) w ith include command.

include : $"...\gentee\lib\socket\internet.g"

Common internet functions

Socket methods
URL strings
Types

Common internet functions

inet_close
inet_error
inet_init
inet_proxy
inet_proxyenable

inetnotify_func
Socket methods

socket.close
socket.connect
socket.isproxy
socket.recv
socket.send

socket.urlconnect

URL strings
str.iencoding
str.ihead
str.ihttpinfo

str.iurl

Types
httpinfo
inetnotify

socket

Closing the library.

Getting an error code.

Library initialization.

Using a proxy server.
Enabling/disabling a proxy server.

Message handling function.

Closes a socket.
Opens a socket.

Connecting via a proxy or not.

The method gets a packet from the connected server.

The method sends a request to the connected server.

Creating and connecting a socket to a URL.

Recoding a string.
Getting a header.
Processing a header.

The method is used to parse a URL address.

HTTP header data.
Type for handling messages.

Socket structure.

Page 438

inet_close

Closing the library. This function must be called after the w ork w ith the library is finished.

func uint inet close()
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 439

inet_error

Getting an error code. The function returns the code of the last error. Codes greater than 10000 are codes of errors in the library
WinSock 2 (ws2_32.dll).

func uint inet_error()
Return value

The code of the last error.

$ERRINET_DLLVERSION Unsupported version of ws2_32.dll.
$ERRINET_HTTPDATA Not HTTP data is received.
$ERRINET_USERBREAK The process is interrupted by the user.
$ERRINET_OPENFILE Cannot open the file.
$ERRINET_WRITEFILE Cannot w rite the file.
$ERRINET_READFILE Cannot read the file.
$ERRFTP_RESPONSE The wrong response of the server.
$ERRFTP_QUIT The wrong QUIT response of the server.
$ERRFTP_BADUSER The bad user name.
$ERRFTP_BADPSW The w rong passw ord.
$ERRFTP_PORT Error PORT.
Related links

Socket

Page 440

inet_init
Library initialization. This function must be called before w orking w ith the library.

func uint inet init()
Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 441

inet_proxy
Using a proxy server. The functions allow s you to specify a proxy server to be used for connecting to the Internet.
func uint inet proxy (

uint flag,

str proxyname

)

Parameters

flag The flag specifying for w hich protocols the specified proxy should be used.
$PROXY_HTTP Use a proxy server for the HTTP protocol.
$PROXY_FTP Use a proxy server for the FTP protocol.
$PROXY_ALL Use a proxy server for all protocols.
$PROXY_EXPLORER Take the proxy server information from the Internet Explorer settings. In this case

the proxyname parameter can be empty.
proxyna The name of the proxy server. It must contain a host name and a port number separated by a colon.
me

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Socket

Page 442

inet_proxyenable

Enabling/disabling a proxy server. The function allow s you to enable or disable the proxy server for various protocols. Initially, the
proxy server must be specified using the inet_proxy function.

func uint inet proxyenable (
uint flag,
uint enable
)
Parameters
flag The flag specifying for w hich protocols the proxy should be enabled or disabled.

$PROXY_HTTP Use a proxy server for the HTTP protocol.
$PROXY_FTP Use a proxy server for the FTP protocol.
$PROXY_ALL Use a proxy server for all protocols.

$PROXY_EXPLORER Take the proxy server information from the Internet Explorer settings. In this case the
proxyname parameter can be empty.

enab Specify 1 to enable the proxy server or 0 to disable the proxy server.
le

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 443

inetnotify_func

Message handling function. When some functions are called, you can specify a function for handing incoming notifications. In
particular, it allow s you to show the w orking process to the user. This handling function must have the follow ing parameters.
func uint inetnotify func (

uint code,

inetnotify ni

)

Parameters
co Message code.
de

SNFYINET_ERROR An error occurred. The code of the error can be got w ith the help of the inet_error
function.

$NFYINET_CONNECT Server connection.

$NFYINET_SEND Sending a request.
$NFYINET_POST Sending data.
SNFYINET_HEAD Processing the header. ni.param points to httpinfo.

SNFYINET_REDIRECT Request redirection. ni.sparam contains the new URL.

SNFYINET_GET Data is received. ni.param contains the total size of all data.
SNFYINET_PUT Data is sent. ni.param contains the total size of all data.
$NFYINET_END The connection is terminated.

$NFYFTP_RESPONSE Response of the FTP server. The field ni.head contains it.
$NFYFTP_SENDCMD Sending a command to the FTP server. The field ni.head contains it.

SNFYFTP_NOTPASV Passive mode w ith the FTP server is unavailable.
ni The variable of the inetnotify type w ith additional data.

Return value

The function must return 1 to continue w orking and 0 otherw ise.

Related links

e Socket

Page 444

socket.close

Closes a socket.

method uint socket.close()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 445

socket.connect

Opens a socket. The method creates a socket and establishes a connection to the host and port specified in the host and port
fields of the socket structure.

method uint socket.connect ()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 446

socket.isproxy
Connecting via a proxy or not. This method can be used to determine if a socket is connected via a proxy server or not.

method uint socket.isproxy ()
Return value

1 is returned if the socket is connected via a proxy server and 0 is returned otherw ise.

Related links

e Socket

Page 447

socket.recv
The method gets a packet from the connected server.

method uint socket.recv (
buf data

)
Parameters
data The buffer for writing data. The received packet wiill be added to the data already existing in the buffer.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 448

socket.send
e method uint socket.send(str data)
e method uint socket.send(buf data)

The method sends a request to the connected server.
method uint socket.send (
str data

)
Parameters
data Request string.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

socket.send
The method sends a request data to the connected server.

method uint socket.send (
buf data

)
Parameters
data Request buffer.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 449

socket.urlconnect

Creating and connecting a socket to a URL. The method is used to create and connect a socket to the specified Internet address. If
a proxy server is enabled, the connection w ill be established via it.

method uint socket.urlconnect (

str url,
str host,
str path
)
Parameters
url The URL address for connecting.
host The string for getting the host from the URL.
path The string for getting the relative path from the URL.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

Socket

Page 450

str.iencoding

Recoding a string. The method recodes the specified string in order to send it using the POST method. Spaces are replaced w ith
'+', special characters are replaced w ith their hexadecimal representations %XX. The result w ill be w ritten to the string for w hich
the method w as called.
method str str.iencoding (

str src

)
Parameters
src The string for recoding.

Return value
Returns the object w hich method has been called.

Related links

° Socket

Page 451

str.ihead

Getting a header. The method is used to get the message header. It will be w ritten to the string for w hich the method w as called.
Besides, the header will be deleted from the data object.

method str str.ihead (
buf data

)
Parameters
data The buffer of the string containing the data being processed.

Return value
Returns the object w hich method has been called.

Related links

e Socket

Page 452

str.ihttpinfo

Processing a header. The method processes a string as an HTTP header and w rites data it gets into the httpinfo structure.

{
Parameters
hi The variable of the httpinfo type for getting the results.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

e Socket

Page 453

str.iurl
The method is used to parse a URL address.

method uint str.iurl (
str host,
str port,

str path
)
Parameters
host The string for getting the host name.
port The string for getting the port.
path The string for getting the relative path.

Return value

1 is returned if the FTP protocol w as specified. Otherw ise, 0 is returned.

Related links

Socket

Page 454

httpinfo

HTTP header data. The structure is used to get data from an HTTP header. Depending on the header, some fields may be empty.

type httpinfo

{
uint code
datetime dt
str size
str location

}
Members
code

dt

size
location

Related links
Socket

Message code.

Last modified date.

File size.

New file location.

Page 455

inetnotify

Type for handling messages. This structure is passed to the message handling function as a parameter. Additional parameters

take various values depending on the message code.

type inetnotify

{
str url
str head
uint param
str sparam

}

Members

url

head

param

Sparam

Related links

Socket

The URL address being processed.

The header of the received packet.

Additional integer parameter.

Additional string parameter.

Page 456

socket
Socket structure.

type socket

{
str host
ushort port
uint socket

uint flag
}
Members
host Host name.
port Port number.
socket Open socket identifier.
flag Additional flags. $SOCKF_PROXY - The socket is opened via a proxy server.
Related links
e Socket

Page 457

Stack

Stack. You can use variables of the stack type for w orking w ith stacks. The stack type is inherited from the arr type. So, you

can also use methods of the arr type.

Methods
Type

Methods
stack.pop
stack.popval
stack.push

stack.top

Type

stack

Extracting an item.
Extracting an number.

Add an item to a stack.

Get the top item in a stack.

The main structure of the stack.

Page 458

stack.pop

e method uint stack.pop

e method str stack.pop(str val)

Extracting an item. The method deletes the top item from a stack.

method uint stack.pop
Return value

The pointer to the next new top item.

stack.pop
The method extracts a string from a stack. The stack must be described as stack of str.
method str stack.pop (

str val

)
Parameters
val Result string.

Return value

Returns the parameter val.

Related links
e Stack

Page 459

stack.popval

Extracting an number. The method extracts a number from a stack.

method uint stack.popval
Return value

The number extracted from the stack is returned.

Related links
Stack

Page 460

stack.push
method uint stack.push

method uint stack.push(uint val)

method str stack.push(str val)

Add an item to a stack.

method uint stack.push
Return value

The pointer to the added item.

stack.push
The method adds a number to a stack.
method uint stack.push (

uint val

)
Parameters
val Pushing uint or int number.

Return value

The added value is returned.

stack.push

The method adds a string to a stack. The stack must be described as stack of str.

method str stack.push (
str val
)
Parameters
val Pushing string.
Return value
The added string is returned.

Related links
Stack

Page 461

stack.top
Get the top item in a stack.

method uint stack.top
Return value

The pointer to the top item.

Related links
e Stack

Page 462

stack
The main structure of the stack.

type stack <inherit = arr>
{
}
Related links
e Stack

Page 463

String

Strings. It is possible to use variables of the str type for w orking w ith strings. The str type is inherited from the buf type. So, you

can also use methods of the buf type.

Operators
Methods

Search methods

Operators
*str

str + str
str = str
str += type
str == str
str < str

str > str
str(type)

type(str)
Methods

str.append
str.appendch
str.clear
str.copy...
str.crc
str.del
str.dellast
str.eqlen...
str.fill...
str.find...
str.hex...
str.insert
str.islast
str.lines
str.lower
str.out4
str.print
str.printf
str.read
str.repeat

str.replace

Get the length of a string.

Putting tw o strings together and creating a resulting string.
Copy the string.

Appending types to the string.

Comparison operation.

Comparison operation.

Comparison operation.

Converting types to str.

Converting string to other types.

Data addition.

Adding a character to a string.

Clearing a string.

Copying.

Calculating the checksum.

Delete a substring.

Delete the last character.

Comparison.

Filling a string.

Find the character in the string.

Converting an unsigned integer in the hexadecimal form.
Insertion.

Check the final character.

Convert a multi-line string to an array of strings.
Converting to low ercase.

Output a 32-bit value.

Print a string into the console w indow .

Write formatted data to a string.

Read a string from a file.

Repeating a string.

Replacing in a string.

Page 464

str.replacech Replace a character.

str.setlen Setting a new string size.
str.split Splitting a string.
str.substr Getting a substring.
str.trim... Trimming a string.
str.upper Converting to uppercase.
str.write Writing a string to a file.
str.writeappend Appending string to a file.

Search methods
spattern
spattern.init
spattern.search

str.search

The pattern structure for the searching.

Creating data search pattern.
Search a pattern in another string.

Substring search.

Page 465

* str
Get the length of a string.

operator uint * (
str left

)

Return value

The length of the string.

Related links
. String

Page 466

str + str

Putting tw o strings together and creating a resulting string.

operator str +<result> (
str left,
str right

)

Return value

The new result string.

Related links
String

Page 467

str = str
Copy the string.
operator str = (
str left,
str right

)
Return value

The result string.

Related links
e String

Page 468

str += type
operator str +=(_str left, str right)
operator str +=(_str left, uint right)
operator str +=(_str left, int val)
operator str +=(_str left, float val)
operator str +=(str left, long val)
operator str +=(_str left, ulong val)
operator str +=(_str left, double val)

Appending types to the string. Append str to str => str += str.
operator str += (
str left,
str right
)
Return value

The result string.

str += uint
Append uint to str => str += uint.
operator str += (
str left,
uint right
)

str += int
Append int to str => str += int.
operator str += (
str left,
int val

)

str += float
Append float to str => str += float.
operator str += (
str left,
float val
)

str += long
Append long to str => str += long.
operator str += (
str left,
long val
)

str += ulong
Append ulong to str => str += ulong.
operator str += (

str left,

ulong val

)

str += double
Append double to str => str += double.
operator str += (

str left,

double val

)
Related links

String

Page 469

Page 470

str == str
operator uint ==(_str left, str right)

operator uint !=(_str left, str right)

operator uint %==(_str left, str right)

operator uint %!=(_str left, str right)

Comparison operation.
operator uint == (
str left,
str right
)
Return value

Returns 1 if the strings are equal. Otherw ise, it returns 0.

str = str

Comparison operation.
operator uint !'= (
str left,
str right
)
Return value

Returns 0 if the strings are equal. Otherw ise, it returns 1.

str %== str
Comparison operation w ith ignore case.
operator uint %== (

str left,

str right

)
Return value

Returns 1 if the strings are equal w ith ignore case. Otherw ise, it returns 0.

str %!= str
Comparison operation w ith ignore case.
operator uint %'!'= (

str left,

str right

)
Return value

Returns 0 if the strings are equal w ith ignore case. Otherw ise, it returns 1.

Related links
String

Page 471

str < str
operator uint <(_str left, str right)

operator uint <=(_str left, str right)

operator uint %<(str left, str right)

operator uint %<=(_str left, str right)

Comparison operation.
operator uint < (
str left,
str right
)
Return value

Returns 1 if the first string is less than the second one. Otherw ise, it returns 0.

str <= str
Comparison operation.
operator uint <= (
str left,
str right

)
Return value

Returns 1 if the first string is less or equal the second one. Otherw ise, it returns 0.

str %< str
Comparison operation w ith ignore case.
operator uint %< (

str left,

str right

)
Return value

Returns 1 if the first string is less than the second one w ith ignore case. Otherw ise, it returns 0.

str %<= str
Comparison operation w ith ignore case.
operator uint %<= (

str left,

str right

)
Return value

Returns 1 if the first string is less or equal the second one w ith ignore case. Otherw ise, it returns 0.

Related links
String

Page 472

str > str
operator uint >(_str left, str right)

operator uint >=(_str left, str right)

operator uint %>(str left, str right)

operator uint %>=(_str left, str right)

Comparison operation.
operator uint > (
str left,
str right
)
Return value

Returns 1 if the first string is greater than the second one. Otherw ise, it returns 0.

str >= str
Comparison operation.
operator uint >= (
str left,
str right

)
Return value

Returns 1 if the first string is greater or equal the second one. Otherw ise, it returns 0.

str %> str
Comparison operation w ith ignore case.
operator uint %> (

str left,

str right

)
Return value

Returns 1 if the first string is greater than the second one w ith ignore case. Otherw ise, it returns 0.

str %>= str
Comparison operation w ith ignore case.
operator uint %>= (

str left,

str right

)
Return value

Returns 1 if the first string is greater or equal the second one w ith ignore case. Otherw ise, it returns 0.

Related links
String

Page 473

str(type)
method str int.str < result >
method str uint.str < result >
method str float.str <result>
method str long.str <result>

method str ulong.str<result>
method str double.str <result>

Converting types to str. Convert int to str => str(int).

method str int.str < result >
Return value

The result string.

str(uint)
Convert uint to str => str(uint).

method str uint.str < result >

str(float)
Convert float to str => str(float).

method str float.str <result>

str(long)

Convert long to str => str(long).

method str long.str <result>

str(ulong)

Convert ulong to str => str(ulong).

method str ulong.str<result>

str(double)
Convert double to str => str(double).
method str double.str <result>
Related links

String

Page 474

type(str)
method int str.int
method uint str.uint
method float str.float

method long str.long

method double str.double

Converting string to other types. Convert str to int => int(str).

method int str.int
Return value

The result value of the according type.

uint(str)
Convert str to uint => uint(str).

method uint str.uint

float(str)
Convert str to float => float(str).

method float str.float

long(str)
Convert str to long => long(str).

method long str.long

double(str)

Convert str to double => double(str).

method double str.double
Related links
String

Page 475

str.append

Data addition. Add data to a string.

method str str.append (
uint src,

uint size

)

Parameters
src The pointer to the data to be added.
size The size of the data being added.

Return value
Returns the object w hich method has been called.

Related links
String

Page 476

str.appendch
Adding a character to a string.
method str str.appendch (

uint ch

)
Parameters
ch The character to be added.

Return value

Returns the object w hich method has been called.

Related links
String

Page 477

str.clear
Clearing a string.

method str str.clear()
Return value

Returns the object w hich method has been called.

Related links
String

Page 478

str.copy...
e method str str.copy(uint ptr)
e method str str.load(uint ptr, uint len)

Copying. The method copies data into a string.
method str str.copy (
uint ptr
)
Parameters
ptr The pointer to the data being copied. All data to the zero character will be copied.
Return value

Returns the object w hich method has been called.

str.load

The method copies data into a string.

method str str.load (
uint ptr,

uint Ien

)
Parameters
src The pointer to the data being copied. If data does not end in a zero, it will be added automatically.

size The size of the data being copied.
Return value
Returns the object w hich method has been called.

Related links
e String

Page 479

str.crc
Calculating the checksum. The method calculates the checksum of a string.

method uint str.crc()
Return value

The string checksum is returned.

Related links
e String

Page 480

str.del
Delete a substring.

method str str.del (
uint off,
uint Ien

)

Parameters

off The offset of the substring being deleted.

len The size of the substring being deleted.
Return value
Returns the object w hich method has been called.

Related links
String

Page 481

str.dellast
Delete the last character. The method deletes the last character if it is equal the specified parameter.
method str str.dellast (
uint ch
)

Parameters
ch A character to be checked.

Return value
Returns the object w hich method has been called.

Related links
e String

Page 482

str.eqlen...
method uint str.eglen(_uint ptr)

method uint str.eglenign(_uint ptr)

method uint str.eqglen(str src)

method uint str.eglenign(str src)

Comparison. Compare a string w ith the specified data. The comparison is carried out only at the length of the string the method is
called for.
method uint str.eqlen (
uint ptr
)
Parameters
ptr The pointer to the data to be compared.

Return value

Returns 1 if there is an equality and 0 otherw ise.

str.eqlenign
Compare a string w ith the specified data. The comparison is carried out only at the length of the string the method is called for.

method uint str.eqlenign (
uint ptr
)
Parameters
ptr The pointer to the data to be compared. The comparison is case-insensitive.

str.eqlen

Compare a string w ith the specified string. The comparison is carried out only at the length of the string the method is called for.

method uint str.eqlen (
str src
)
Parameters
src The string to be compared.

str.eqlenign
Compare a string w ith the specified string. The comparison is carried out only at the length of the string the method is called for.

method uint str.eqlenign (

str src
)
Parameters
src The string to be compared. The comparison is case-insensitive.
Related links
String

Page 483

strfill...
e method str strfill(_str val, uint count, uint flag)
e method str str.fillspacel(_uint len)
e method str str.fillspacer(_uint len)

Filling a string. Fill a string to the left or to the right.
method str str.fill (

str val,
uint count,
uint flag
)
Parameters
val The string that w ill be filled.
count The number of additions.
flag Flags.
SFILL_LEFT Filling on the left side.
$FILL_LEN The count parameter contains the final string size.
$FILL_CUT Cut if longer than the final size. Used together with FILL_LEN.

Return value

Returns the object w hich method has been called.

str.fillspacel

Fill a string w ith spaces to the left.

method str str.fillspacel (
uint Ien

)

Parameters

len Final string size.

str.fillspacer
Fill a string w ith spaces to the right.

method str str.fillspacer (

uint Ien
)
Parameters
len Final string size.
Related links
° String

Page 484

str.find...
method uint str.findch(_uint offset, uint symbol, uint fromend)

method uint str.findch(_uint symbol)

method uint str.findchr(_uint symbol)

method uint str.findchfrom(_uint symbol, uint offset)

method uint str.findchnum(_uint symbol, uint i)

Find the character in the string.

method uint str.findch (
uint offset,
uint symbol,
uint fromend

)

Parameters

offset The offset to start searching from.

symbol Search character.

fromend If it equals 1, the search wiill be carried out from the end of the string.

Return value

The offset of the character if it is found. If the character is not found, the length of the string is returned.

str.findch
Find the character from the beginning of the string.

method uint str.findch (
uint symbol
)
Parameters
symbol Search character.

str.findchr
Find the character from the end of the string.

method uint str.findchr (
uint symbol
)
Parameters
symbol Search character.

str.findchfrom
Find the character from the specified offset in the string.
method uint str.findchfrom (

uint symbol,

uint offset

)

Parameters
symbol Search character.
offset The offset to start searching from.

str.findchnum
Find the #glt(i) character in the string.

method uint str.findchnum (
uint symbol,

uint 1
)
Parameters
symbol Search character.
i The number of the character starting from 1.
Related links
String

Page 485

str.hex...
method str str.hexI(_uint val)

method str str.hexu(_uint val)

func str hex2stri<result>(_uint val)

func str hex2stru<result>(_uint val)

Converting an unsigned integer in the hexadecimal form. Low er characters.

method str str.hexl (
uint val

)
Parameters
val The unsigned integer value to be converted into the string.

Return value

Returns the object w hich method has been called.

str.hexu

Converting an unsigned integer in the hexadecimal form. (upper characters).

method str str.hexu (
uint val

)
Parameters
val The unsigned integer value to be converted into the string.

Return value

Returns the object w hich method has been called.

hex2strl

Converting an unsigned integer in the hexadecimal form. (low er characters).

func str hex2strl<result>
uint val

)
Parameters
val The unsigned integer value to be converted into the string.

Return value

The new result string.

hex2stru

Converting an unsigned integer in the hexadecimal form. (upper characters).

func str hex2stru<result> (
uint val
)
Parameters
val The unsigned integer value to be converted into the string.
Return value

The new result string.

Related links
String

Page 486

str.insert
Insertion. The method inserts one string into another.
method str str.insert (

uint offset,

str value

)

Parameters
offset The offset w here string wiill be inserted.
value The string being inserted.

Return value
Returns the object w hich method has been called.

Related links
String

Page 487

str.islast
Check the final character.

method uint str.islast (
uint symbol
)
Parameters
symbol The character being checked.
Return value

Returns 1 if the last character in the string coincides w ith the specified one and 0 otherw ise.

Related links
e String

Page 488

str.lines
method arrstr str.lines(arrstr ret, uint trim, arr offset)

method arrstr str.lines(_arrstr ret, uint trim)

method arrstr str.lines<result>(_uint trim)

Convert a multi-line string to an array of strings.

method arrstr str.lines (
arrstr ret,
uint trim,
arr offset

)

Parameters

ret The result array of strings.

trim Specify 1 if you w ant to trim all characters less or equal space in lines.
offset The array for getting offsets of lines in the string. It can be 0->>arr.

Return value

The result array of strings.

str.lines
Convert a multi-line string to an array of strings.
method arrstr str.lines (
arrstr ret,
uint trim

)

Parameters

ret The result array of strings.

trim Specify 1 if you w ant to trim all characters less or equal space in lines.
str.lines

Convert a multi-line string to an array of strings.

method arrstr str.lines<result>
uint trim
)
Parameters
trim Specify 1 if you w ant to trim all characters less or equal space in lines.
Return value

The new result array of strings.

Related links
String

Page 489

str.lower
method str str.low er()

method str str.low er(_uint off, uint size)

Converting to low ercase. The method converts characters in a string to low ercase.

method str str.lower()
Return value

Returns the object w hich method has been called.

str.lower
Convert a substring in the specified string to low ercase.
method str str.lower (
uint off,
uint size
)
Parameters
off Substring offset.

size Substring size.

Related links
String

Page 490

str.out4
e method str str.out4(str format, uint val)

e method str str.out8(str format, ulong val)

Output a 32-bit value. The value is appended at the end of the string.
method str str.out4d (

str format,

uint val
)

Parameters
format The format of the output. It is the same as in the function 'printf' in C programming language.

val 32-bit value to be appended.
Return value

Returns the object w hich method has been called.

str.out8
Output a 64-bit value. The value is appended at the end of the string.
method str str.out8 (

str format,

ulong val

)
Parameters
format The format of the output. It is the same as in the function 'printf' in C programming language.

val 64-bit value to be appended.
Return value
Returns the object w hich method has been called.

Related links
° String

Page 491

str.print
method str.print()

func print(_str output)

Print a string into the console w indow .

method str.print()

print
Print a string into the console w indow .
func print (

str output

)
Parameters

output The output string.

Related links
String

Page 492

str.printf
Write formatted data to a string. The method formats and stores a series of characters and values in string. Each argument is
converted and output according to the corresponding C/C++ format specification (printf) in format parameter.
method str str.printf (
str format,
collection clt

)

Parameters
format The format of the output.
clt Optional arguments.

Return value

Returns the object w hich method has been called.

Related links
e String

Page 493

str.read
Read a string from a file.
method uint str.read (

str filename

)
Parameters
filename Filename.

Return value
The size of the read data.

Related links
e String

Page 494

str.repeat
Repeating a string. Repeat a string the specified number of times.

method str str.repeat (
uint count

)
Parameters
count The number of repeatitions. The result w ill be w ritten into this very string.

Return value
Returns the object w hich method has been called.

Related links
e String

Page 495

str.replace
e method str str.replace(uint offset, uint size, str value)

e method str str.replace(arrstr aold, arrstr anew , uint flags)

e method str str.replace(str sold, str snew, uint flags)

Replacing in a string. The method replaces data in a string.

method str str.replace (
uint offset,
uint size,
str value

)

Parameters

offset The offset of the data being replaced.
size The size of the data being replaced.
value The string being inserted.

Return value

Returns the object w hich method has been called.

str.replace
The method looks for strings from one array and replace to strings of another array.
method str str.replace (

arrstr aold,
arrstr anew,

uint flags
)
Parameters
aold The strings to be replaced.
anew The new strings.
il ags Flags.
$QS_IGNCASE Case-insensitive search.
$QS_WORD Search the w hole w ord only.
$QS_BEGINWORD Search words w hich start w ith the specified pattern.

Return value

Returns the object w hich method has been called.

str.replace
The method replaces one string to another string in the source string.
method str str.replace (

str sold,

str snew,

uint flags
)
Parameters
sold The string to be replaced.
snew The new string.
flags Flags.
$QS_IGNCASE Case-insensitive search.
$QS_WORD Search the w hole w ord only.
$QS_BEGINWORD Search words w hich start w ith the specified pattern.

Return value
Returns the object w hich method has been called.

Related links
e String

Page 496

str.replacech

Replace a character. The method copies a source string w ith the replacing a character to a string.

method str str.replacech (

str src,
uint from,
str to
)
Parameters
src Initial string.
from A character to be replaced.
to A string for replacing.

Return value
Returns the object w hich method has been called.

Related links
String

Page 497

str.setlen
e method str str.setlen(uint len)

e method str str.setlenptr()

Setting a new string size. The method does not reserve space. You cannot specify the size of a string greater than the reserved
space you have. Mostly, this function is used for specifying the size of a string after external functions w rite data to it.

method str str.setlen (
uint Ien

)
Parameters
Jlen New string size.

Return value

Returns the object w hich method has been called.

str.setlenptr

Recalculate the size of a string to the zero character. The function can be used to determine the size of a string after other
functions write data into it.

method str str.setlenptr()
Related links
e String

Page 498

str.split

method arrstr str.split(_arrstr ret, uint symbol, uint flag)

method arrstr str.split <result> (_uint symbol, uint flag)

method uint str.split(uint symbol, str left, str right)

Splitting a string. The method splits a string into substrings taking into account the specified separator.

method arrstr str.split (
arrstr ret,
uint symbol,
uint flag
)
Parameters
ret The result array of strings.
symb Separator.
ol
flag Flags.

$SPLIT_EMPTY Take into account empty substrings.
$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.
Return value

The result array of strings.

The method splits a string into the new result array of strings.
method arrstr str.split <result> (
uint symbol,
uint flag
)
Parameters
symb Separator.
ol

i ag Flags.
$SPLIT_EMPTY Take into account empty substrings.
$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.
Return value

The new result array of strings.

str.split
The method looks for the first symbol and splits a string into tw o parts.

method uint str.split (
uint SYIUbOl Vé

str left,
str right
)
Parameters
symbol Separator.
left The substring left on the symbol.
right The substring right on the symbol.

Return value

Page 499

Returns 1 if the separator has been found. Otherw ise, return 0.

Related links
° String

Page 500

str.substr
method str str.substr(str src, uint off, uint len)

method str str.substr(_uint off, uint len)

Getting a substring.

method str str.substr (

str src,

uint off,

uint Ien
)
Parameters
src Initial string.
off Substring offset.
len Substring size.

Return value

Returns the object w hich method has been called.

str.substr

Get a substring. The result substring w ill be w ritten over the existing string.

method str str.substr (

uint off,
uint Ien
)
Parameters
off Substring offset.
len Substring size.
Related links
String

Page 501

str.trim...
method str str.trimsys()

method str str.trimrsys()

method str str.trim(_uint symbol, uint flag)

method str str.trimrspace()

method str str.trimspace()

Trimming a string. Deleting spaces and special characters on both sides.

method str str.trimsys()
Return value

Returns the object w hich method has been called.

str.trimrsys

Deleting spaces and special characters on the right.

method str str.trimrsys()

str.trim
Delete the specified character on either sides of a string.

method str str.trim (
uint symbol,
uint flag
)
Parameters
symbo The character being deleted.
1

flag Flags.
$TRIM_LEFT Trim the left side.
$TRIM_RIGHT Trim the right side.
$TRIM_ONE Delete only one character.
$TRIM_PAIR If the character being deleted is a bracket, look the closing bracket on the right

$TRIM_SYS Delete characters less or equal space.

str.trimrspace

Deleting spaces on the right.

method str str.trimrspace ()

str.trimspace
Deleting spaces on the both sides.

method str str.trimspace()
Related links
e String

Page 502

str.upper
method str str.upper()
method str str.upper(_uint off, uint size)

Converting to uppercase. The method converts characters in a string to uppercase.

method str str.upper ()
Return value

Returns the object w hich method has been called.

str.upper
Convert a substring in the specified string to uppercase.
method str str.upper (
uint off,
uint size
)
Parameters
off Substring offset.

size Substring size.

Related links
String

Page 503

str.write
Writing a string to a file.
method uint str.write (

str filename

)
Parameters
filename The name of the file for writing. If the file already exists, it will be overw ritten.

Return value
The size of the written data.

Related links
e String

Page 504

str.writeappend
Appending string to a file. The method appends a string to the specified file.
method uint str.writeappend (

str filename

)
Parameters
filename Filename.

Return value
The size of the written data.

Related links
e String

Page 505

spattern
The pattern structure for the searching. The spattern type is used to search through the string for another string. Don't change the
fields of the spattern strcuture. The spattern variable must be initialized w ith spattern.init method.

type spattern
{
uint pattern
uint size
reserved shift[1024]
uint flag
}
Members

pattern Hidden data.
size The size of the pattern.
shift[1024] Hidden data.
flag Search flags.
Related links

e String

Page 506

spattern.init
e method spattern spattern.init(buf pattern, uint flag)
e method spattern spattern.init(_str pattern, uint flag)

Creating data search pattern. Before search start-up, call this method in order to initialize the search pattern. Then do a search of

the specified pattern w ith spattern.search.

method spattern spattern.init (
buf pattern,

uint flag
)
Parameters
pattern Search string (pattern).
flag Search flags.
$QS_IGNCASE Case-insensitive search.
$QS_WORD Search the w hole w ord only.
$QS_BEGINWORD Search words w hich start w ith the specified pattern.

Return value

Returns the object w hich method has been called.

spattern.init

Creating data search pattern.

method spattern spattern.init (
str pattern,

uint flag
)
Parameters
pattern Search string (pattern).
flag Search flags.
$QS_IGNCASE Case-insensitive search.
$QS_WORD Search the w hole w ord only.
$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.
Related links
e String

Page 507

spattern.search
method uint spattern.search(buf src, uint offset)

method uint spattern.search(uint ptr, uint size)

method uint spattern.search(str src, uint offset)

Search a pattern in another string. Before search start-up, call the spattern.init method in order to initialize the search pattern.

method uint spattern.search (
buf src,
uint offset

)

Parameters
src String w here the specified string wiill be searched (search pattern).
offset Offset w here the search must be started or proceeded.

Return value

The offset of the found fragment. If the offset is equal to string size,no fragment is found.

spattern.search

Search a pattern in a memory data.

method uint spattern.search (
uint ptr,
uint size

)

Parameters
ptr The pointer to the memory data w here the pattern wiill be searched.
size The size of the memory data.

Return value

The offset of the found fragment. If the offset is equal to string size,no fragment is found.

spattern.search
Search a pattern in another string.
method uint spattern.search (

str src,
uint offset

)

Parameters
src String w here the specified string wiill be searched (search pattern).
offset Offset w here the search must be started or proceeded.

Return value
The offset of the found fragment. If the offset is equal to string size,no fragment is found.

Related links
String

Page 508

str.search
Substring search. The method determines if the string has been found inside another string or not.

method uint str.search (
str pattern,

uint flag
)
Parameters
pattern Search string (pattern).
flag Search flags.
$QS_IGNCASE Case-insensitive search.
$QS_WORD Search the w hole w ord only.
$QS_BEGINWORD Search words w hich start w ith the specified pattern.

Return value
The method returns 1 if the substring is found, otherw ise the return value is zero.

Related links
String

Page 509

String - Filename

Filename strings. Methods for w orking w ith file names.

str.faddname

str.fappendslash

str.fdelslash
str.ffullname
str.fgetdir
str.fgetdrive
str.fgetext
str.fgetparts
str.fnameext
str.fsetext
str.fsethame
str.fsetparts
str.fsplit

str.fwildcard

Adding a name.

Adding a slash.

Deleting the final slash.

Getting the full name.

Getting the directory name.

Getting the name of a disk.

Get the extension.

Getting name components.

Getting the name of a file.

Modifying the extension.

Modifying the name of the file.
Compounding or modifying the name.
Getting the directory and name of a file.

Wildcard check.

Page 510

str.faddname
Adding a name. Add a file name or a directory to a path.

method str str.faddname (
str name

)
Parameters

name The name being added. It will be added after a slash.

Return value
Returns the object w hich method has been called.

Related links
String - Filename

Page 511

str.fappendslash

Adding a slash. Add '\' to the end of a string if it is not there.

method str str.fappendslash ()
Return value

Returns the object w hich method has been called.

Related links
String - Filename

Page 512

str.fdelslash

Deleting the final slash. Delete the final '\ if it is there.

method str str.fdelslash()
Return value

Returns the object w hich method has been called.

Related links
String - Filename

Page 513

str.ffullname

Getting the full name. The method gets the full path and name of a file.

method str str.ffullname (
str name

)
Parameters
name Initial filename.

Return value
Returns the object w hich method has been called.

Related links
String - Filename

Page 514

str.fgetdir
Getting the directory name. The method removes the final name of a file or directory.
method str str.fgetdir (

str name

)
Parameters
name Initial filename.

Return value
Returns the object w hich method has been called.

Related links
e String - Filename

Page 515

str.fgetdrive
Getting the name of a disk. Get the netw ork name (\\computer\share\) or the name of a disk (c:\).

method str str.fgetdrive (
str name

)
Parameters
name Initial filename.

Return value
Returns the object w hich method has been called.

Related links
e String - Filename

Page 516

str.fgetext
Get the extension. The method w rites the file extension into the result string.

method str str.fgetext< result >
Return value

The result string w ith the extension.

Related links
e String - Filename

Page 517

str.fgetparts

Getting name components. Get the directory, name and extensions of a file.
method str.fgetparts (

str dir/

str fname,

str ext
)
Parameters
dir The string for getting the directory. It can be 0->str.
fname The string for getting the file name. It can be 0->str.
ext The string for getting the file extension. It can be 0->str.
Related links

e String - Filename

Page 518

str.fnameext
Getting the name of a file. Get the name of the filename or directory from the full path.

method str str.fnameext (
str name
)
Parameters
name Initial filename.
Related links
e String - Filename

Page 519

str.fsetext
e method str str.fsetext(str name, str ext)
e method str str.fsetext(str ext)

Modifying the extension. The method gets the file name w ith a new extension.

method str str.fsetext (
str name,

str ext
)
Parameters
name Initial file name.
ext File extension.

Return value

Returns the object w hich method has been called.

str.fsetext
Modifying the extension in the filename.
method str str.fsetext (
str ext
)
Parameters
ext File extension.
Related links
e String - Filename

Page 520

str.fsetname

Modifying the name of the file. The method modifies the current filename.

method str str.fsetname (
str filename

)
Parameters

filename

Return value

Returns the object w hich method has been called.

Related links
String - Filename

A new filename.

Page 521

str.fsetparts

Compounding or modifying the name. Compound the name of a file out of the path, name and extension. This function can be also
used to modify the path, name or extension of a file. In this case if some component equals 0->str, it is left unmodified.

method str str.fsetparts (
str dir,
str fname,
str ext
)
Parameters
dir Directory.

fname Filename.

ext File extension.

Return value
Returns the object w hich method has been called.

Related links
String - Filename

Page 522

str.fsplit

Getting the directory and name of a file. The method splits the full path into the name of the final file or directory and the rest of the
path.

method str.fsplit (
str dir,
str name

)
Parameters
dir The string for getting the directory.

name The string for getting the name of a file or directory.

Related links
e String - Filename

Page 523

str.fwildcard

Wildcard check. Check if a string coincides w ith the specified mask.

method uint str.fwildcard (
str wildcard

)
Parameters
wildcard The mask being checked. It can contain '?' (one character) and ™' (any number of characters).

Return value

Returns 1 if the string coincides w ith the mask.

Related links
e String - Filename

Page 524

String - Unicode

Unicode strings. It is possible to use variables of the ustr type for w orking w ith Unicode strings. The ustr type is inherited from
the buf type. So, you can also use methods of the buf type.

Operators
Methods
Operators
* ustr Get the length of a unicode string.
ustr[i] Getting ushort character [i] of the Unicode string.
ustr + ustr Add tw o strings.
ustr = type Assign types to unicode string.
str = ustr Copy a unicode string to a string.

ustr += type

Appending types to the unicode string.

str == ustr Comparison operation.

ustr < ustr Comparison operation.

ustr > ustr Comparison operation.

ustr(str) Converting a string to a unicode string ustr(str).
str(ustr) Converting a unicode string to a string str(ustr).
Methods

ustr.clear Clearing a unicode string.

ustr.copy Copying.

ustr.del Delete a substring.

ustr.findch Find the character in the unicode string.

ustr.fromutf8

ustr.insert Insertion.
ustr.lines Convert a multi-line unicode string to an array of unicode strings.
ustr.read Read a unicode string from a file.

ustr.replace
ustr.reserve
ustr.setlen
ustr.split

ustr.substr

Convert a UTF-8 string to a unicode string.

Replacing in a unicode string.

Memory reservation.

Setting a new size of the unicode string.
Splitting a unicode string.

Getting a unicode substring.

ustr.toutf8 Convert a unicode string to UTF-8 string.
ustr.trim... Trimming a unicode string.
ustr.write Writing a unicode string to a file.

Page 525

* ustr

Get the length of a unicode string.

operator uint * (
ustr left

)

Return value

The length of the unicode string.

Related links
String - Unicode

Page 526

ustr[i]

Getting ushort character [i] of the Unicode string.

method uint ustr.index (
uint id

)

Return value

The [i] ushort character of the Unicode string.

Related links
String - Unicode

Page 527

ustr + ustr
e operator ustr +<result> (_ustr left, ustr right)
e operator ustr +<result>(_ustr left, str right)

Add tw o strings. Putting tw o unicode strings together and creating a resulting unicode string.

operator ustr +<result> (
ustr left,
ustr right

)

Return value

The new result unicode string.

ustr + str
Add a unicode string and a string.
operator ustr +<result> (
ustr left,
str right

)
Return value

The new result unicode string.

Related links
e String - Unicode

Page 528

ustr = type
. operator ustr =(_ustr left, str right)
. operator ustr =(_ustr left, ustr right)

Assign types to unicode string. Copy a string to the unicode string ustr = str.

operator ustr = (
ustr left,
str right

)

Return value

The result unicode string.

ustr = ustr
Copy a unicode string to another unicode string.
operator ustr = (

ustr left,

ustr right

)
Related links

° String - Unicode

Page 529

str = ustr

Copy a unicode string to a string.

operator str
str left,
ustr right

)

Return value

The result string.

Related links
String - Unicode

(

Page 530

ustr += type

. operator ustr +=(_ustr left, ustr right)

. operator ustr +=(_ustr left, str right)

Appending types to the unicode string. Append ustr to ustr => ustr += ustr.

operator ustr += (
ustr left,
ustr right

)

Return value

The result unicode string.

ustr += str

Append str to ustr => ustr += str.

operator ustr += (

ustr left,
str right
)
Related links

° String - Unicode

Page 531

str == ustr
e operator uint ==(str left, ustr right)

e operator uint ==(_ustr left, str right)

Comparison operation.
operator uint == (
str left,
ustr right
)
Return value

Returns 1 if the strings are equal. Otherw ise, it returns 0.

ustr == str

Comparison operation.

operator uint == (
ustr left,

str right

)
Return value

Returns 1 if the strings are equal. Otherw ise, it returns 0.

Related links
e String - Unicode

Page 532

ustr < ustr
e operator uint <(_ustr left, ustr right)
e operator uint <=(_ustr left, ustr right)

Comparison operation.

operator uint < (
ustr left,
ustr right

)

Return value

Returns 1 if the first string is less than the second one. Otherw ise, it returns 0.

ustr <= ustr

Comparison operation.

operator uint <= (
ustr left,

ustr right

)
Return value

Returns 1 if the first string is less or equal the second one. Otherw ise, it returns 0.

Related links
e String - Unicode

Page 533

ustr > ustr
e operator uint >(_ustr left, ustr right)
e operator uint >=(_ustr left, ustr right)

Comparison operation.

operator uint > (
ustr left,
ustr right

)

Return value

Returns 1 if the first string is greater than the second one. Otherw ise, it returns 0.

ustr >= ustr

Comparison operation.

operator uint >= (
ustr left,

ustr right

)
Return value

Returns 1 if the first string is greater or equal the second one. Otherw ise, it returns 0.

Related links
e String - Unicode

Page 534

ustr(str)

Converting a string to a unicode string ustr(str).

method ustr str.ustr<result> (

)
Return value

The result unicode string.

Related links
String - Unicode

Page 535

str(ustr)

Converting a unicode string to a string str(ustr).

method str ustr.str<result> (

)
Return value

The result string.

Related links
String - Unicode

Page 536

ustr.clear
Clearing a unicode string.

method ustr ustr.clear
Return value

Returns the object w hich method has been called.

Related links
String - Unicode

Page 537

ustr.copy
method ustr ustr.copy(_uint ptr, uint size)

method ustr ustr.copy(uint ptr)

Copying. The method copies the specified size of the data into a unicode string.

method ustr ustr.copy (
uint ptr,
uint size

)

Parameters

ptr The pointer to the data being copied. If data does not end in a zero, it will be added automatically.

size The size of the data being copied.
Return value

Returns the object w hich method has been called.

ustr.copy

The method copies data into a unicode string.

method ustr ustr.copy(uint ptr)
Parameters

ptr The pointer to the data being copied. All data to the zero ushort w ill be copied.

Return value
Returns the object w hich method has been called.

Related links
String - Unicode

Page 538

ustr.del

Delete a substring.

method ustr ustr.del (
uint Off/

uint Ien

)

Parameters
off The offset of the substring being deleted.
len The size of the substring being deleted.

Return value
Returns the object w hich method has been called.

Related links
String - Unicode

Page 539

ustr.findch
method uint ustr.findch(_uint off, ushort symbol)

method uint ustr.findch(_ ushort symbol)

Find the character in the unicode string.

method uint ustr.findch (
uint off,
ushort symbol

)

Parameters
off The offset to start searching from.
symbol Search character.

Return value

The offset of the character if it is found. If the character is not found, the length of the string is returned.

ustr.findch
Find the character in the unicode string from the beginning of the string.
method uint ustr.findch (
ushort symbol
)

Parameters
symbol Search character.
Related links

e String - Unicode

Page 540

ustr.fromutf8
Convert a UTF-8 string to a unicode string.
method ustr ustr.fromutf8 (

str src

)
Parameters

src Source UTF-8 string.

Return value

Returns the object w hich method has been called..

Related links
String - Unicode

Page 541

ustr.insert
Insertion. The method inserts one unicode string into another.
method ustr ustr.insert (

uint offset,

ustr value

)

Parameters
offset The offset w here string wiill be inserted.
value The unicode string being inserted.

Return value
Returns the object w hich method has been called.

Related links
String - Unicode

Page 542

ustr.lines
method arrustr ustr.lines(_ arrustr ret, uint flag)
method arrustr ustr.lines<result>(_uint trim)
method arrustr ustr.lines(_arrustr ret)
method arrustr ustr.lines<result>()

Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines (
arrustr ret,

uint flag
)
Parameters
re The result array of unicode strings.
t
1l Flags.
ag $SPLIT_EMPTY Take into account empty substrings.

$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.
Return value

The result array of unicode strings.

ustr.lines

Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines<result> (
uint trim

)

Parameters
trim Specify 1 if you w ant to trim all characters less or equal space in lines.

Return value

The new result array of unicode strings.

ustr.lines

Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines (
arrustr ret

)

Parameters

ret The result array of strings.

ustr.lines

Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines<result> ()
Return value

The new result array of unicode strings.

Related links
String - Unicode

Page 543

ustr.read
Read a unicode string from a file.

method uint ustr.read (
str filename

)
Parameters
filename Filename.

Return value
The size of the read data.

Related links
e String - Unicode

Page 544

ustr.replace

Replacing in a unicode string. The method replaces data in a unicode string.

method ustr ustr.replace (
uint offset,
uint size,
ustr value

)

Parameters

offset The offset of the data being replaced.
size The size of the data being replaced.
value The unicode string being inserted.

Return value
Returns the object w hich method has been called.

Related links
String - Unicode

Page 545

ustr.reserve
Memory reservation. The method increases the size of the memory allocated for the unicode string.
method ustr.reserve (

uint Ien

)

Parameters

len The summary requested length of th eunicode string. If it is less than the current size, nothing happens. If the size is
increased, the current string data is saved.

Return value
Returns the object w hich method has been called.

Related links
. String - Unicode

Page 546

ustr.setlen
method ustr ustr.setlen(_uint len)
method ustr ustr.setlenptr

Setting a new size of the unicode string. The method does not reserve space. You cannot specify the size of a string greater than
the reserved space you have. Mostly, this function is used for specifying the size of a string after external functions w rite data to
it.
method ustr ustr.setlen (
uint len
)
Parameters
len New string size.

Return value

Returns the object w hich method has been called.

ustr.setlenptr

Recalculate the size of a unicode string to the zero character. The function can be used to determine the size of a string after
other functions w rite data into it.

method ustr ustr.setlenptr
Related links
e String - Unicode

Page 547

ustr.split

method arrustr ustr.split(arrustr ret, ushort symbol, uint flag)

method arrustr ustr.split <result> (_uint symbol, uint flag)

Splitting a unicode string. The method splits a string into substrings taking into account the specified separator.

method arrustr ustr.split (

arrustr ret,
ushort symbol,
uint flag

)

Parameters

ret The result array of unicode strings.

symb Separator.
ol
flag Flags.

$SPLIT_EMPTY
$SPLIT_NOSYS
$SPLIT_FIRST

$SPLIT_QUOTE

$SPLIT_APPEND
Return value

The result array of strings.

Take into account empty substrings.
Delete characters <= space on the left and on the right.

Split till the first separator.

Take into account that elements can be enclosed by single or double quotation marks.

Adding strings. Otherw ise, the array is cleared before loading.

The method splits a unicode string into the new result array of unicode strings.

method arrustr ustr.split <result> (

uint symbol,
uint flag
)
Parameters
symb Separator.
ol

flag Flags.
$SPLIT_EMPTY
$SPLIT_NOSYS
$SPLIT_FIRST
$SPLIT_QUOTE

$SPLIT_APPEND
Return value

Take into account empty substrings.
Delete characters <= space on the left and on the right.

Split till the first separator.

Take into account that elements can be enclosed by single or double quotation marks.

Adding strings. Otherw ise, the array is cleared before loading.

The new result array of unicode strings.

Related links
String - Unicode

Page 548

ustr.substr
Getting a unicode substring.

method ustr ustr.substr (
ustr src,
uint start,

uint Ien
)
Parameters
src Initial unicode string.
start Substring offset.
len Substring size.

Return value
Returns the object w hich method has been called.

Related links
String - Unicode

Page 549

ustr.toutf8
Convert a unicode string to UTF-8 string.

method str ustr.toutf8 (
str dest

)
Parameters
dest Destination string.

Return value
The dest parameter.

Related links
e String - Unicode

Page 550

ustr.trim...
e method ustr ustr.trim(_uint symbol, uint flag)

method ustr ustr.trimrspace()
method ustr ustr.trimspace()

Trimming a unicode string.

method ustr ustr.trim (
uint symbol,
uint flag

)

Parameters
symbo The character being deleted.

1
i ag Flags.

$TRIM_LEFT Trim the left side.

$TRIM_RIGHT Trim the right side.

$TRIM_ONE Delete only one character.

$TRIM_PAIR If the character being deleted is a bracket, look the closing bracket on the right

$TRIM_SYS Delete characters less or equal space.
Return value

Returns the object w hich method has been called.

ustr.trimrspace

Deleting spaces on the right.

method ustr ustr.trimrspace ()

ustr.trimspace

Deleting spaces on the both sides.

method ustr ustr.trimspace ()
Related links
e String - Unicode

Page 551

ustr.write
Writing a unicode string to a file.

method uint ustr.write (
str filename

)
Parameters
filename The name of the file for writing. If the file already exists, it will be overw ritten.

Return value
The size of the written data.

Related links
e String - Unicode

Page 552

System
System functions.

Callback and search features

Type functions
m ax Determining the largest of tw o numbers.
min Determining the smallest of tw o numbers.

Callback and search features

callback Create a callback function.
freecallback Free a created callback function.
getid Getting the code of an object by its name.

Type functions

destroy Destroying an object.

new Creating an object.

sizeof Get the size of the type.

type_delete Delete the object as located by the pointer.
type_hasdelete Whether an object should be deleted.
type_hasinit Whether an object should be initialized.
type_init Initiate the object as located by the pointer.

Page 553

max
func uint max(_uint left, uint right)

func uint max(int left, int right)

Determining the largest of tw o numbers.
func uint max (

uint left,

uint right
)

Parameters
left The first compared number of the uint type.

right The second compared number of the uint type.
Return value

The largest of tw o numbers.

max

Determining the largest of tw o int numbers.

func uint max (

int left,
int right
)
Parameters
Jleft The first compared number of the int type.
right The second compared number of the int type.

Return value
The largest of tw o int numbers.

Related links
System

Page 554

min
func uint min(_uint left, uint right)

func uint min(_int left, int right)

Determining the smallest of tw o numbers.
func uint min (

uint left,

uint right
)

Parameters
left The first compared number of the uint type.

right The second compared number of the uint type.
Return value

The smallest of tw o numbers.

min
Determining the smallest of tw o int numbers.

func uint min (

int left,
int right
)
Parameters
Jleft The first compared number of the int type.
right The second compared number of the int type.

Return value
The smallest of tw o int numbers.

Related links
System

Page 555

callback

Create a callback function. This function allow s you to use gentee functions as callback functions. For example, gentee function
can be specified as a message handler for w indow s.

func uint callback (
uint idfunc,
uint parsize

)
Parameters
idfunc Identifier (address) of gentee function that will be callback function.

parsize Thesummary size of parameters (number of uint values). One parameter uint = 1 (uint = 1). uint + uint = 2, uint +
long = 3.

Return value

You can use the return value as the callback address. You have to free it with freecallback function w hen you don't need this
callback function.

Related links
. System

Page 556

freecallback
Free a created callback function.

func freecallback (
uint pmem

)

Parameters

pmem The pointer that w as returned by callback function.

Related links
System

Page 557

getid
Getting the code of an object by its name. The function returns the code of an object (function, method, operator, type) by its name
and parameters.
func uint getid (
str name,
uint flags,
collection idparams

)

Parameters
name The name of an object (function, method, operator).
flags Flags.
$GETID_METHOD Search method. Specify the main type of the method as the first parameter in the
collection.
$GETID_OPERATOR Search operator. You can specify the operator in name as is. For example, +=.
$GETID_OFTYPE Specify this flag if you w ant to describe parameters w ith types of items (of type). In
this case, collection must contains pairs - idtype and idoftype.
idpara The types of the required parameters.
ms

Return value

The code (identifier) of the found object. The function returns 0 if the such object w as not found.

Related links
e System

Page 558

destroy
Destroying an object. Destroying an object created by the function new .
func destroy (
uint obj
)
Parameters
obj The pointer to the object to be destroyed.
Related links
e System

Page 559

new
func uint new (uint objtype)
func uint new (_uint objtype, uint oftype, uint count)

Creating an object. The function creates an object of the specified type.

func uint new (
uint objtype
)
Parameters
objtype The identifier or the name of a type.

Return value

The pointer to the created object.

new

The function creates an object w ith specifing the count and the type of its items.

func uint new (
uint objtype,
uint oftype,
uint count

)

Parameters

objtype The identifier or the name of a type.
oftype The type of object's items.

count The initial count of object's items.

Return value
The pointer to the created object.

Related links
System

Page 560

sizeof
Get the size of the type.
func uint sizeof (
uint idtype
)
Parameters
idtype Identifier or the name of the type. The compiler changes the name of the type to its identifier.

Return value
The type size in bytes.

Related links
e System

Page 561

type_delete

Delete the object as located by the pointer. Gentee deletes objects automaticaly. Use this function only if you allocated the memory
for the variable.

func type delete (
pubyte ptr,
uint idtype

)

Parameters

ptr The pointer to the memory space w here the object being deleted is located.
idtype The type of the object.
Related links

e System

Page 562

type_hasdelete
Whether an object should be deleted. Specifies the necessity to call the function type delete for deleting an object of this type.

func uint type hasdelete (
uint idtype
)
Parameters
idtype The type of an object.

Return value
1 is returned if it is necessary to call type_delete, 0 is returned otherw ise.

Related links
e System

Page 563

type_hasinit
Whether an object should be initialized. Specifies the necessity to call the function type_init for initiating an object of this type.
func uint type hasinit (
uint idtype
)

Parameters
idtype The type of an object.

Return value
1 is returned if it is necessary to call type_init, 0 is returned otherw ise.

Related links
e System

Page 564

type_init
Initiate the object as located by the pointer. Gentee initializes objects automaticaly. Use this function only if you allocated the
memory for the variable.
func uint type_init (
pubyte ptr,
uint idtype
)

Parameters
ptr The pointer to the memory space w here the object being created is located.
idtype The type of the object.

Return value

The pointer to the object is returned.

Related links
e System

Page 565

Thread

This library allow s you to create threads and w ork w ith them. The methods described above are applied to variables of the thread
type. For using this library, it is required to specify the file thread.g (from lib\thread subfolder) w ith include command.

include : $".
Methods
Functions

Methods
thread.create
thread.getexitcode
thread.isactive
thread.resume
thread.suspend
thread.terminate

thread.wait
Functions

exitthread

sleep

..\gentee\lib\thread\thread.g"

Create a thread.

Get the thread exit code.

Checking if a thread is active.

Resuming a thread.
Stop a thread.
Terminating a thread.

Waiting till a thread is exited.

Exiting the current thread.

Pause the current thread for the specified time.

Page 566

thread.create
Create a thread.

method uint thread.create (
uint idfunc,
uint param

)

Parameters

idfunc The pointer to the function that will be called as a new thread. The function must have one parameter. You can get
the pointer using the operator &.

param Additional parameter.
Return value

The handle of the created thread is returned. It returns 0 in case of an error.

Related links
e Thread

Page 567

thread.getexitcode
Get the thread exit code.

method uint thread.getexitcode (
uint result

)

Parameters

result The pointer to a variable of the uint type the thread exit code will be w ritten to. If the thread is still active, the value
$STILL_ACTIVE will be w ritten.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Thread

Page 568

thread.isactive
Checking if a thread is active.

method uint thread.isactive ()
Return value

Returns 1 if the thread is active and 0 otherw ise.

Related links
Thread

Page 569

thread.resume

Resuming a thread. Resume a thread paused w ith the thread.suspend method.

method uint thread.resume ()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Thread

Page 570

thread.suspend
Stop a thread.

method uint thread.suspend ()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Thread

Page 571

thread.terminate
Terminating a thread.
method uint thread.terminate (

uint code

)
Parameters
code Thread termination code.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Thread

Page 572

thread.wait
Waiting till a thread is exited.

method uint thread.wait ()
Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Thread

Page 573

exitthread
Exiting the current thread.

func exitthread (
uint code
)
Parameters
code Thread exit code

Related links
° Thread

Page 574

sleep
Pause the current thread for the specified time.
func sleep (

uint msec

)
Parameters
msec The time for pausing the thread in milliseconds.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
e Thread

Page 575

Tree

Tree object. The each node of tree object can have a lot of childs. It is required to include tree.g.

include : $"...\gentee\lib\tree\tree.g"

Operators
Methods
Treeitem methods

Operators
tree of type
* tree

* treeitem

foreach var,treeitem

Methods
tree.clear
tree.del
tree.leaf
tree.node

tree.root
Treeitem methods

treeitem.changenode
treeitem.child
treeitem.data
treeitem.getnext
treeitem.getprev
treeitem.isleaf
treeitem.isnode
treeitem.isroot
treeitem.lastchild
treeitem.move

treeitem.parent

Specifying the type of items.
Get the count of items in a tree.
Get the count of childs in the tree item.

Foreach operator.

Delete all items in the tree.
Deleting an item.

Adding a "leaf".

Adding a "node".

Get the root item of a tree.

Change the parent node of an item.

Get the first child of an item.

Get the pointer to the data stored in an object.
Getting the next item to the current tree item.
Getting the previous item to the current tree item.
Check if it is a leaf.

Check if it is a node.

Check if it is a root item.

Get the last child item of the tree item.

Move an item.

Get the parent of an item.

Page 576

tree of type

Specifying the type of items. You can specify of type w hen you describe tree variable. In default, the type of the items is uint.
method tree.oftype (
uint itype
)
Related links

o Tree

Page 577

* tree

Get the count of items in a tree.

operator uint * (
tree itree

)
Return value

The count of childs in the tree.
Related links

Tree

Page 578

* tfreeitem

Get the count of childs in the tree item.

operator uint * (
treeitem treei

)
Return value

The count of childs in the tree item.
Related links

Tree

Page 579

foreach var,treeitem

Foreach operator. You can use foreach operator to look over all items of the treeitem. Variable is a pointer to the child tree item.

foreach variable,treeitem {...}
Related links

o Tree

Page 580

tree.clear
Delete all items in the tree.

method tree tree.clear (
)
Return value

Returns the object w hich method has been called.

Related links

Tree

Page 581

tree.del
e method tree.del(treeitem item, uint funcdel)
e method tree.del(treeitem item)

Deleting an item. Delete an item together w ith all its child items.
method tree.del (

treeitem item,

uint funcdel

)

Parameters

item The item being deleted.

funcdel The custom function that w ill be called before deleting the each item. It can be 0.
tree.del

Delete an item together w ith all its child items.

method tree.del (
treeitem item

)

Parameters
item The item being deleted.
Related links

e Tree

Page 582

tree.leaf
method treeitem tree.leaf(treeitem parent, treeitem after)

method treeitem tree.leaf(treeitem parent)

Adding a "leaf". Add a "leaf" to the specified node. You can not add items to a "leaf".

method treeitem tree.leaf (
treeitem parent,
treeitem after

)

Parameters
parent Parent node. If it is 0->treeitem then the item w ill be added to the root.
after Insert an item after this tree item. If it is 0->treeitem then the item w ill be the first child.

Return value

The added item or 0 in case of an error.

tree.leaf
Add a "leaf" to the specified node. An item w ill be the last child item.
method treeitem tree.leaf (
treeitem parent
)

Parameters
parent Parent node. If it is O->treeitem then the item w ill be added to the root.

Return value

The added item or 0 in case of an error.

Related links

Tree

Page 583

tree.node
method treeitem tree.node(treeitem parent, treeitem after)

method treeitem tree.node(treeitem parent)

Adding a "node". Add a "node" to the specified node. You can add items to a "node".

method treeitem tree.node (
treeitem parent,
treeitem after

)

Parameters
parent Parent node. If it is 0->treeitem then the item w ill be added to the root.
after Insert an item after this tree item. If it is 0->treeitem then the item w ill be the first child.

Return value

The added item or 0 in case of an error.

tree.node
Add a "node" to the specified node. An item w ill be the last child item.
method treeitem tree.node (
treeitem parent
)

Parameters
parent Parent node. If it is O->treeitem then the item w ill be added to the root.

Return value

The added item or 0 in case of an error.

Related links

Tree

Page 584

tree.root
method treeitem tree.root

method treeitem treeitem.getroot()

Get the root item of a tree.

method treeitem tree.root
Return value

Returns the root item of the tree.

treeitem.getroot

Get the root item of a tree.

method treeitem treeitem.getroot()
Return value
Returns the root item of the tree.

Related links

Tree

Page 585

treeitem.changenode
Change the parent node of an item.
method uint treeitem.changenode (

treeitem treei

)
Parameters
treei New parent node.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

o Tree

Page 586

treeitem.child

Get the first child of an item.

method treeitem treeitem.child()
Return value
Returns the first child item or O if there is none.

Related links

Tree

Page 587

treeitem.data

Get the pointer to the data stored in an object.

method uint treeitem.data()
Return value

Returns the pointer to the data.

Related links

Tree

Page 588

treeitem.getnext
Getting the next item to the current tree item.

method treeitem treeitem.getnext ()
Return value
Returns the next item.

Related links

Tree

Page 589

treeitem.getprev
Getting the previous item to the current tree item.

method treeitem treeitem.getprev ()
Return value
Returns the previous item.

Related links

Tree

Page 590

treeitem.isleaf
Check if it is a leaf. The method checks if an item is a "leaf" (if it cannot have child items).

method uint treeitem.isleaf
Return value

Returns 1 if this item is a tree "leaf" and 0 otherw ise.

Related links

o Tree

Page 591

treeitem.isnode
Check if it is a node. The method checks is an item can have child items.

method uint treeitem.isnode
Return value

Returns 1 if this item is a tree "node" and 0 otherw ise.

Related links

o Tree

Page 592

treeitem.isroot

Check if it is a root item. The method checks if an item is a root one.

method uint treeitem.isroot
Return value

Returns 1 if this item is a root one and 0 otherw ise.

Related links

Tree

Page 593

treeitem.lastchild
Get the last child item of the tree item.

method treeitem treeitem.lastchild()
Return value
Returns the last child item or O if there is none.

Related links

Tree

Page 594

treeitem.move
method uint treeitem.move(treeitem after)

method uint treeitem.move(treeitem target, uint flag)

Move an item.

method uint treeitem.move (
treeitem after

)
Parameters
after The node to insert the item after. Specify 0 if it should be made the first item.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

treeitem.move
Move an item.

method uint treeitem.move (
treeitem target,

uint flag
)
Parameters
target The node to insert the item after or before depending on the flag.
flag Move flag.
$TREE_FIRST The first child item of the same parent.
$TREE_LAST The last child item of the same parent.
$TREE_AFTER After this item.
$TREE_BEFORE Before this item.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links

Tree

Page 595

treeitem.parent

Get the parent of an item.

method treeitem treeitem.parent ()
Return value

Returns the parent of this item.

Related links

o Tree

Page 596

XML

XML file processing. This library is used for XML file processing and XML tree building. Neither a multibyte-character set nor a
document type description <IDOCTYPE> are handled in the current version. For using this library, it is required to specify the
file xml.g (from lib\xml subfolder) w ith include command.

include : $"...\gentee\lib\xml\xml.g"

Operators
Methods
Methods of XML tree items

XML description
Operators

A brief description of XML library.

foreach var,xmlitem

Methods

Foreach operator.

xm l.adde ntity Adds an entity description.

xml.getroot Gets the root item of the XML document tree.
xm l.procfile Process an XML file.

xml.procstr Processes a string contained the XML document.

Methods of XML tree items

xm litem.chtag

xm litem .findtag

xm litem .getattrib
xm litem .getchild

xm litem .getchildtag
xm litem .getchildte xt
xm litem.getname
xm litem.getnext

xm litem .getnexttag
xm litem .getnexttext
xm litem.getparent
xm litem .gette xt

xm litem .isem ptytag
xm litem .is pitag

xm litem .istag

xmlitem .istext

Gets a tag item w ith the help of a "path".
Search for a tag item by the name.

Gets a tag item attribute value.

Gets the first child item of the current item.
Gets the first child tag item.

Gets the first child text item.

Gets the name of the XML item.

Gets the next item.

Gets the next tag item.

Gets the next text item.

Gets the parent item of the current item.

Gets a text of the current item in the XML tree.
Determines if the item is an empty tag item.
Checks if the item is a tag processing instruction.
Determines if the current item is a tag item.

Determines if the current item is a text item.

Page 597

XML description

A brief description of XML library. Variables of either the xm| and the xm litem type (an XML tree item) are used for processing
XML documents. An XML tree item can be of tw o types: a text item and a tag item. There are several types of tag items:

e tagitem that contains other items <tag ...>.....</tag>;
e tagitem that contains no other items <tag .../>;
e tag item of processing instruction <?tag ...?>.

A tag item may contain attributes.

The sequence of operations for processing an XML document:

e process a document (build an XML tree) with the help of the xml.procfile method or the xml.procstr method;
add entity definitions, using the xml.addentity method if necessary;
search for the required items in the XML tree using the follow ing methods: xml.getroot, xmlitem.chtag, xmlitem.findtag

xmlitem.getnext, etc.;
use the foreach statement in order to process similar elements if necessary;

e gain access to tag attributes w ith the help of the xmlitem.getattrib method and get a text using the xmlitem.gettext method.
Related links
e XML

Page 598

foreach var,xmlitem

Foreach operator. Looking through all items w ith the help of the foreach operator. Defining an optional variable of the xmItags
type is required. The foreach statement is used for variables of the xmlitem type and goes through all child tag items of the
current tag.

xmltags xtags
xmlitem curtag

foreach xmlitem cur, curtag.tags(xtags)

{
}
foreach variable,xmlitem.tags(xmltags) {...}
Related links
XML

Page 599

xml.addentity

Adds an entity description. The entity must have been described before the gettext method is called. Below you can see the list of
entities described by default:

& - &;
" - ";
' - ";
> - >;
< - <;

method xml.addentity (
str key,

str value

)

Parameters
key Key (an entity name - &entity_name;).
value Entity value is a string that will be pasted into the text.
Related links
XML

Page 600

xml.getroot

Gets the root item of the XML document tree. Actually, a root item contains all items of an XML document tree only.

method xmlitem xml.getroot()
Return value

Returns a root item.

Related links
XML

Page 601

xml.procfile
Process an XML file. Reads the XML file, the name of w hich is specified as a parameter, and process it.

method uint xml.procfile (
str filename

)

Parameters

filename Name of the file processed.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
XML

Page 602

xml.procstr
Processes a string contained the XML document.
method uint xml.procstr (

str src

)

Parameters

src XML data string.

Return value

If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
XML

Page 603

xmlitem.chtag

Gets a tag item w ith the help of a "path". Searches through the XML tree for a tag item w ith the help of the specified "path". A
"path" consists of tag names separated by the '/' character, if the first character in a path is the '/' character, the item search
begins from the tree root; otherw ise - from the current item.
method xmlitem xmlitem.chtag (
str path
)
Parameters
path Path of the item.

Return value
Returns the item obtained or zero, if no item has been found.

Related links
XML

Page 604

xmlitem.findtag

Search for a tag item by the name. Searches through the XML tree for a tag item w ith the specified name. The item is searched
recursively through all child items.

method xmlitem xmlitem.findtag (
str name

)

Parameters

name Name of the required tag.
Return value

Returns the item obtained or zero, if no item has been found.

Related links
XML

Page 605

xmlitem.getattrib

Gets a tag item attribute value.

method str xmlitem.getattrib (
str name,

str result

)

Parameters
name Attribute name.
result Result string.

Return value

Returns the string that contains the attribute value. If no attribute has been found, it returns an empty string.

Related links
XML

Page 606

xmlitem.getchild

Gets the first child item of the current item.

method xmlitem xmlitem.getchild ()
Return value

Returns the child item or zero, if the item does not contain any child items.

Related links
XML

Page 607

xmlitem.getchildtag

Gets the first child tag item. This method is similar to the xmlitem.getchild method; how ever, if the child item is not a tag item, in this
case, the tag item that comes first is searched through the child items.

method xmlitem xmlitem.getchildtag()
Return value

Returns the child tag item or zero, if the item does not contain any child tag items.

Related links
XML

Page 608

xmlitem.getchildtext

Gets the first child text item. This method is similar to the xmlitem.getchild method; how ever, if the child item is not a text item, in this
case, the text item that comes first is searched through the child items.

method xmlitem xmlitem.getchildtext ()
Return value

Returns the child text item or zero, if the item does not contain any child text items.

Related links
XML

Page 609

xmlitem.getname
Gets the name of the XML item.

method str xmlitem.getname (

str res

)

Parameters

res

Return value

Returns the parameter res.

Related links
XML

Result string.

Page 610

xmlitem.getnext
Gets the next item. How ever, the next item must be searched through the items w ith the same parent item.

method xmlitem xmlitem.getnext ()
Return value

Returns the next item or zero, if the item is the last item.

Related links
XML

Page 611

xmlitem.getnexttag

Gets the next tag item. This method is similar to the xmlitem.getnext method, but if the next item is not a tag item, this operation
repeats.

method xmlitem xmlitem.getnexttag
Return value

Returns the next tag item or zero, if the item is the last item.

Related links
XML

Page 612

xmlitem.getnexttext

Gets the next text item. This method is similar to the xmlitem.getnext method, but if the next item is not a text item, this operation
repeats.

method xmlitem xmlitem.getnexttext ()
Return value

Returns the next text item or zero, if the item is the last item.

Related links
XML

Page 613

xmlitem.getparent
Gets the parent item of the current item.

method xmlitem xmlitem.getparent ()
Return value

Returns the parent item or zero, if the current item is the root item.

Related links
XML

Page 614

xmlitem.gettext

Gets a text of the current item in the XML tree. This method is applied either to a text item or a tag item, in the latter case, the text is
obtained from the child text item.

method str xmlitem.gettext (
str result

)

Parameters

result Result string.

Return value

Returns the string that contains the text of the item. If no text has been found, it returns an empty string.

Related links
XML

Page 615

xmlitem.isemptytag

Determines if the item is an empty tag item. Determines if the current item is a tag item, that contains no child items <tag .../>;.
method uint xmlitem.isemptytag()

Return value

Returns nonzero if the item is a tag item, that contains no child items; otherw ise, it returns zero.

Related links
XML

Page 616

xmlitem.ispitag

Checks if the item is a tag processing instruction. Determines if the current item is a tag of processing instruction <?tag ...?>.
method uint xmlitem.ispitag()

Return value

Returns nonzero if the item is a tag of processing instruction, otherw ise, it returns zero.

Related links
XML

Page 617

xmlitem.istag
Determines if the current item is a tag item.

method uint xmlitem.istag()
Return value

Returns nonzero if the item is a tag item; otherw ise, it returns zero.

Related links
XML

Page 618

xmlitem.istext
Determines if the current item is a text item.

method uint xmlitem.istext ()
Return value

Returns nonzero if the item is a text item; otherw ise, it returns zero.

Related links
XML

Page 619

Samples

Welcome to Gentee Programming Language! This tutorial w ill help you master our programming language by using
easy-to-understand examples.

You should have some familiarity w ith computers. But it is not essential to have extensive experience in programming or to know
any other computer languages. In fact, these lessons w ere w ritten under the assumption that you have little or no programming
skills.

The tutorial begins w ith basic concepts and then builds on them w ith more complex lessons. If a lesson is too simple for you, skip
over it! If you're a novice, take things step-by-step.

This tutorial does not concentrate primarily on the syntax and semantics of Gentee Programming Language. (Information about this
can be found in the documentation.) Instead, the tutorial concentrates on the development of language skills by developing

softw are solutions to practical computing problems. Furthermore, each lesson includes a self-study exercise for independent

w ork. We feel that programming skills are best acquired through practice. Therefore, w e recommend that you complete the
exercises.

Each lesson features source code that will help you understand how to develop programming solutions. If developing solutions
seems daunting, carefully examine the source code for hints about how the program w orks. These source programs are located
in the Samples subdirectory of the Gentee distribution kit.

hello A simple program outputs a string to a console.
square Nalculating the area and the perimeter of a rectangle and of a circle.
easymath Finding the greatest common divisor, factorial and the Fibonacci numbers.

primenumber Calculate primes using "The Sieve of Eratosthenes".

fileattrib Set or remove the attributes of the files a read-only file.

runini Using INI files

easyhtml Display a color palette as HTML, w hich is frequently used for creating an HTML page.
calendar Create a month calendar, selected by a user, in HTML format.

samefiles Find all files w hich have the same contents either in the required folder or in a drive.

If you encounter difficulty, send us an e-mail and w e will try to help you troubleshoot the problem. If your problem provides a
useful lesson for others, w e will seek your permission to disassemble the program and release it to others to provide them w ith
better understanding.

Page 620

hello

There is a tradition in programming tutorials to show the code that prints "Hello, World!" on the computer screen. We w ill adhere to
that tradition by show ing you the Gentee code that produces "Hello World:"

Example 1
func hello <main>
{
print("Hello, World!")
getch ()
}
To understand how the code displays the results printed on your screen, you need to understand certain concepts.
The "Hello World" printed on the screen is called a "function." A function is a type of procedure or routine that performs a specific
task. Some programming languages make a distinction betw een a function, w hich returns a value, and a procedure, w hich

performs a specific task but does not return a value In the case of Gentee, functions are denoted by the operation set that
performs any task.

Functions can be called from other ones. Functions are described by the keyw ord func in Gentee. The function w ith the name
hello and the attribute main have just been mentioned, the attribute means that this function will be run after loading the program.

print ("Hello, World!")

print is a function call outputting the specified string.

A string is a series of characters manipulated as a group. A character string is often specified by enclosing the characters in
quotes. For example, WASHINGTON w ould be a name, but "WASHINGTON" w ould be character strings. In Gentee, strings are
enclosed in double quotes. In other w ords, the quote marks help you define a string.

After w e designate a character string, w e call another function getch that results in a keystroke delay.

More information about this coding can be found in the documentation. In the lessons you can also find information about other
functions and methods.

Now , let's talk about strings. There is a command character '\", that performs some actions depending on the follow ing characters.

This example demonstrates some of them:

\n represents a new line.
\\ represents the symbol: backslash '\'.

In addition to this, Gentee saves line feeds w ithin the string. A line feed is a code that moves the cursor on a display screen dow n
one line. In the example below , the follow ing strings are equivalents.

"Hello, World!
Hello, World!"
"Hello, World!\nHello, World!"

Exercise 2
Make a program "Hello, World!" that prompts the user to press any key.

Page 621

square

You w ill get acquainted w ith numbers in this lesson. We w ill first try to make a program to calculate the area of a rectangle and of
a circle. We w ill use numbers w ith double precision (double type). Double precision refers to a type of floating-point number that
has more precision, or more digits to the right of the decimal point, than a single-precision number.

To begin w ith, create a framew ork of the function.

func main<main>
{
while 1
{
print ("Enter the number of the action:
1. Calculate the area of a rectangle
Calculate the area of a circle
3. Exit\n")
switch getch ()

N

{
case '1l'
{
print ("Specify the width of the rectangle: ")
print ("Specify the height of the rectangle: ")
}
case '2'
{
print ("Specify the radius of the circle: ")
}
case '3', 27 : break
default : print("You have entered the wrong value!\n\n")
}

}

There are tw o new statements here: while and switch.

The while statement repeats the execution of a code, w hile the conditional expression is nonzero. In this case, the condition
equals 1, that means an endless loop and the command break ,as defined below, causes an exit from the loop.

A loop is one of the three basic logic structures in computer programming. The other tw o logic structures are selection and
sequence.

The switch operator evaluates an expression and looks for the value through the values. case. While the program is w aiting for
the keystroke, a user thinks of further actions. Now let's take a look at the follow ing line:
case '3', 27 : break

Notice that the possible values separated by commas are enumerated in case. 27 determines the key code Esc. As for the symbol
"', it is denoted by the follow ing line enclosed in braces. In other w ords, this fragment is equivalent to the follow ing one:

case '3', 27 { break }

The use of braces is often required by Gentee, a usage of the symbol ":' helps you escape piling characters in simple tasks.
To perform calculations w e use a string type of a variable for the return values and a double type of tw o variables in order to
store values. You can start by appending:

str input
double width height

Variables of the same type are separated by a comma or a single space.

Now you can perform calculations and get answ ers. So, to calculate the area of a rectangle w e could construct code like this:

print ("Specify the width of the rectangle: ")

width = double(conread(input))

print ("Specify the height of the rectangle: ")

height = double(conread(input))

print ("The area of the rectangle: \(width * height)\n\n")

The conread function reads data input by a user. The \(...) operation w ithin the string evaluates the expression enclosed in
brackets and inserts data into the string.

Page 622

To calculate the area of a circle, w e can create another example similar to the code, above:

print ("Specify the radius of the circle: ")
width = double(conread(input))
print ("The area of the circle: \(3.1415 * width * width)\n\n")

Exercise 2
Write a program that calculates the perimeter of a rectangle and of a circle. Use a separate function for the perimeter of each
shape.

Page 623

easymath
Example 1
Now w e will analyze an example that finds the greatest common divisor of tw o numbers (GCD).

We take advantage of Euclid's Algorithm for the task solution. It w orks like this:

GCD(%,y) =xif y equals 0 and
GCD(x,y)=GCD(y, x MODy) ify is nonzero.

x MOD vy is the remainder of values.
In other w ords, dividing tw o numbers w e compute the remainder of the values but if the remainder is nonzero, the second number
and the remainder of the values must be considered, etc.

The follow ing fragment provides an obvious example of recursion, that's used to have a function call itself from w ithin itself.
This function is w ritten like this:

func uint gcd(uint first second)

{

if !second : return first
return gcd(second, first % second)

}

% is used to divide tw o numbers and returns the remainder.
uint is a type designating a positive integer.
if is a conditional statement show n in the follow ing example:

if condition {

}

elif condition {

}

else {
}

Note: An infinite number of elif blocks can be used. If the condition is TRUE, statements in braces follow ing this condition w ill be
executed.

Finally, it is time to w rite the main function that can receive the data from the user and call gcd. The function contains the follow ing
loop:
while 1
{

first = uint(congetstr("Enter the first number (enter 0 to exit): ",
input))

if !first : break

second = uint (congetstr("Enter the second number: ", input))

print ("GCD = \(gcd(first, second))\n\n")
}

congetstr is a function provided by standard libraries, it outputs a text to the screen and receives the data from the user.
Example 2
Calculate a factorial n! for n from 1 to 12. A factorial determines the product of numbers up to the given number inclusive.

The follow ing program demonstrates its task solution:

func uint factorial(uint n)

{
if n ==1 : return 1
return n * factorial(n - 1)

func main<main>

{

uint n
print ("This program calculates n! (1 * 2 *...* n) for n from 1 to 12\n\n"
fornum n = 1, 13

{
print ("\ (n)! = \(factorial(n))\n")

Page 624

}
getch ()

}

The fornum loop is executed w hile the counter variable "n" is considered less than the value of the second expression. The loop
counter increases by increments of 1 at each step. fornum is a special case of the for operator - more on that later.

for counter = expression,expression,change of the value of counter
{
}

Exercise 3
Now w e need to calculate the Fibonacci numbers.

These are a series of w hole numbers in w hich each number is the sum of the tw o preceding numbers. Beginning with 0 and 1, the
sequence of Fibonacci numbers would be 0,1,1, 2, 3, 5, 8, 13, 21, 34, etc. using the formula: n = n(-1) + n(-2), w here the n(-1)
means "the last number before n in the series" and n(-2) refers to "the second last one before n in the series."

We w ill calculate until the last number exceeds 2000000000. Use a recursive function.
X0=1
X1=1

Xn = Xn-1 + Xn-2

Exercise 4
Perform the previous task w ithout the use of recursion.

Page 625

primenumber
Example 1
Calculate primes using "The Sieve of Eratosthenes".

Now w e w ill explain the task.

Primes are products of tw o numbers. In other w ords, a prime is divisible only by itself or 1. So, calculating primes by means of
"The Sieve of Eratosthenes" is done like this:

We start w ith a list of candidates containing numbers from 2 to the definite number. 2 is a prime. We remove all even numbers from
the list. Now , w e wiill take 3 and remove all the numbers that are products of it. After this, w e find the next number from the
candidate list. This number is 5, then w e remove the fifth numbers from the list, etc. Therefore, w hen the candidate list is empty,
the result list will contain all the primes.

Let's break the problem into tw o steps. The first step takes advantage of the algorithm, and the second step outputs the results to
the screen.

str input
uint high 1 j

print ("This program uses \"The Sieve of Eratosthenes\" for finding prime
numbers.\n\n")

high = uint(congetstr ("Enter the high limit number (< 100000): ", input))
if high > 100000 : high = 100000

arr sieve[high + 1] of byte

fornum i = 2, high/2 + 1

{
if !sieve[1]
{
=1+ 1
while 7 <= high
{
sieve[7] =1
j o+= 1
}
}
}

To begin with, a user should enter the number w hich is defined as the final candidate in the list. We w ant all primes below 100000
in order to not use a lot of resources.
arr sieve[high + 1] of byte

sieve is a description of an array of bytes. And array is a series of objects, all of w hich are the same size and type. Each object in
an array is called an array element. For example, you could have an array of integers or an array of characters or an array of
anything that has a defined data type. The important characteristics of an array are that (1) Each element has the same data type
(although they may have different values). (2) The entire array is stored contiguously in memory.

The first element in the array is the Oth element, therefore let's set 1 to this number. Actually, arrays and variables are zero-based.
So, if an element of the array equals 0, then this based number is not removed. If w e remove it, w €'ll set 1 to this number.

For the fornum loop w e use only half of the numbers. Why do w e do this? Think it over. Then w e apply the algorithm. As you can
see, it takes up several strings. Let us jump into an example that illustrates how it w orks:

J += 1

This is an extension of the j variable to i. Similar operations are applied for the multiplication, the division, the subtraction.

The numbers has already been removed; let's now jump to the second step.
It is certainly possible that the numbers are output to the screen, nevertheless let's save a file.

j =20
input.setlen(0)

fornum i = 2, high + 1
{

if !sieve[1]

Page 626

nwo

input.outd4 ("%8u", i)
if ++3 == 10
{

3 =0

input += "\1"

input.write("prime.txt")
shell ("prime.txt")

To find out more about the out4 method, read the documentation. In this case each number is extended to eight symbols by
spaces. Furthermore, after outputting each tenth number w e start a new line. The j variable performs it.

A combination of carriage return '\r' and new line "\n" is used for line feed in text files. In Gentee there's only "\I' command w hich

executes it.

The write method w rites the string to the file, and the function shell opens this specified file in the appropriate application.

Page 627

fileattrib

This lesson focuses on files.

Example 1

Set or remove the attributes of the files a read-only file. This program accepts command line parameters. The files can be stored
in templates, using the follow ing operators: ' and '?". The "' operator defines any sequence of characters, '?' represents a single
character.

Thus,

c:\temp*.* - all files in the folder c:\temp

c:\temp*.exe - all files w ith the extension exe in the folder c:\temp

c:\temp\a*.* - all files beginning w ith 'a' in the folder c:\temp

c:\temp\ab ?*.* - all files beginning w ith 'ab' and one other character in the folder c:\temp

So, w e start with command line. It is fairly easy, because of tw o functions: argc returns the number of arguments, argv returns
the required parameter. The first parameter must be the w ord on or off for setting or removing the attribute, the second parameter
must be the template for file processing. So, w e can do it like this:

if argc() > 1

{
if argv(temp, 1) %== "on" : mode =1
elif argv(temp, 1) %== "off" : mode = 2
argv (path, 2)

}

The '%==" operator produces a line-by-line comparison ignoring the characters' case. Here, you can w rite ON as w ell as Off.

If the parameters have not been indicated by the time the program starts or you typed ones that are not valid, give a chance to
input necessary information on the console.

if !'mode
{
mode = conrequest("Choose an action (press a number key):
1. Turn on readonly attribute
Turn off readonly attribute
3. Exit\n", "1|2|3") + 1

N

if mode == 3 : return

congetstr("Specify a filename or a wildcard: ", path)

}

Here the user has to type: 1 to set the attribute, 2 to remove it and 3 to exit the program. The conrequest function w aits for the
keystroke, then returns the number of the selected variant from 0.
For example,

conrequest ("Press #'Y#' or #'N#'", "Yy|[Nn")

OK. Now w e proceed to the task solution. The ffind structure searches for the specified filename. Let's describe and initialize the
variable fd of type ffind.

fd.init (path, $FIND FILE | $FIND RECURSE)
$FIND_FILE points to the search of specified filenames.
$FIND_RECURSE indicates the search of specified filenames in all subdirectories.

For instance,

fd.init ("c:\\temp.txt", SFIND FILE | $FIND RECURSE)
w ith the specified flag $FIND_RECURSE w ill search for the filename: temp.txt on the entire C: drive.

The foreach operator is used for file searching:

foreach cur, fd

{
attrib = getfileattrib(cur.fullname)
if mode == 1 : attrib |= $FILE_ATTRIBUTE_READONLY
else : attrib &= ~$FILE_ATTRIBUTE_READONLY
setfileattrib(cur.fullname, attrib)
print ("\ (cur.fullname)\n")

}

finfo is a type that stores information about files. More information about this can be found in Help.
cur is a variable of the specified type w hich contains the stored information about any file that has been found.

Page 628

Now , | would like to say a few w ords about loop content. We obtain the current file attributes

attrib = getfileattrib(cur.fullname)

According to conditions w e set or remove the attribute of the file a read-only file. Other attributes are saved.

if mode == 1 : attrib |= $FILE ATTRIBUTE READONLY
else : attrib &= ~S$FILE ATTRIBUTE READONLY

We w rite the modified attributes of the file.

setfileattrib(cur.fullname, attrib)

Page 629

runini

Now w e try to automate the EXE files created using the ge2exe program, w hich is integrated into the compiler. This lesson
describes the procedure mentioned above, making it easier for users to create the EXE files.

Example 1
. Let INI-file be a file, w hich contains the information about programs in the Gentee language. We have to help users choose a
program from the given list, compile it and create the EXE file, if necessary.

We start w ith the description of the INI-file format. Each section denotes a program and consists of the follow ing fields:

Name is the name of a program.

Src is the .g file of a program.

Exe - to create the EXE file or not (If the field contains a 1 or a 0).

Run - to run the program after successful compilation or not.

Output - If you w ant to change the last file name or store it in the other directory, you should enter the specified file name and its
path here.

Note that the Src is a required field.

[ID2]

Name = Square

Src = ..\square\square.l.g
Exe =0

The INI-file can be changed; it's up to you. Moreover, you can add elements. Take a look at the runini.ini file used as an example
in the samples\runini subdirectory.

The ini.g library is required to deal w ith the INI-file. So, let’s include the library by using the include command. To illustrate this,
assume that these examples are located in the subdirectory samples, so w e use the relative path. If you w ould like to carry this
example to another directory, you should enter the absolute path.

include : $"..\..\lib\ini\ini.g"

The string w ith the initial dollar sign '$' does not contain any command characters, how ever it may contain macros. It is interesting
to note that the use of such strings makes it easier to define the path to the files, because there is no need to double the '\' sign.

Let's write tw o auxiliary functions.
func uint openini(ini retini)

The openini function reads data from the runini.ini - file; but if the file is not available, the error message is displayed. If you w ant
to get the error code, take a look at the source program.

func uint idaction(ini retini, str section)

This function is considered to be significant. It calls the program that can compile and create the exe-file. The first argument is the
file object ini, the second one is the name of the section that should be launched.

The follow ing statements read the field values.

retini.getvalue(section, "Src", src, "")

if !*src

{
congetch ("ID '\ (section)' is not valid. Press any key...\n")
return 0

}

run = retini.getnum(section, "Run", 1)

exe = retini.getnum(section, "Exe", 0)

retini.getvalue(section, "Output", outname, "")

Note that the last argument of the getvalue and the getnum functions defines the value, if this field isn't defined in the INI-file.

Using the options from the INI-file, the follow ing code generates command lines in order to start up the compiler and ge2exe. The
process function makes the programs start up. The "." directive, as the second argument of the process function, indicates that
gentee.exe and ge2exe.exe w ill use the current directory as their w orking directory.

if exe

{
process("..\\..\\exe\\gentee.exe -p samples \(src)", ".", &result)
src.fsetext (src, "ge")
process("..\\..\\exe\\ge2exe.exe \(src)", ".", &result)
deletefile(src)
src.fsetext (src, "exe")

Page 630

if run : process(src, ".", &result)

}

else : shell(src)

Let us jump into an example that illustrates the function body, w hich displays a list of possible programs and receives the program
name chosen by a user:

ini tini
arrstr sections
str name src section

openini (tini)

tini.sections(sections)

while 1

{
print(L \n")
foreach cur, sections
{

wn)

tini.getvalue(cur, "Src", src,
if !*src : continue

tini.getvalue(cur, "Name", name, src)
print ("\ (cur)".fillspacer(20) + name + "\n")

}

print("----—-————- \n")

congetstr ("Enter ID name (enter 0 to exit): ", section)
if section[0] == '0' : break

idaction(tini, section)
}

First, w e read the INI-file and get the section list contained in a string array. After the program list is displayed in a window, a user
should choose a program name. Then, w e call the idaction function w ith the required program name.

Here, the follow ing string is described in detail.
print ("\ (cur)".fillspacer(20) + name + "\n")

The fillspacer method appends a specified number of space characters onto the end of the string. As you can see, w e call the
method on the string enclosed in double quote marks. Note, that in Gentee a string enclosed in double quote marks is the same
object as a variable of type str. Furthermore, w e can call methods on functions and other methods, w hich return strings.

For example, the expression given below appends ten space characters onto the end of the string, thus increasing the string's
length to 30 characters.

"ID: \(cur)".fillspacer(20).fillspacel(30)

Exercise 2
Write a program using runini.1.g, that gets a program-section name from a command line and runs it. If no command-line argument

is specified, this program must w ork like the program discussed above.

Tip: my program consists of 14 lines. For more details about this, read runini.2.g.

Page 631

easyhtml

This lesson presents one type of function, the text function. As its name suggests, this type of function deals w ith texts. Unlike
other functions, a text with built-in code serves as the basis for text functions.

Example 1
Display a color palette, w hich is frequently used for creating an HTML page. Save data as an HTML file.

First, determine the number of colors displayed in one line using the define command.

define {
lcount = 12

}

Note that such constant quantities are called macros. The dollar sign '$' is used before the name in order to run them.
Let's tackle the last point first.

func color< main >

{
str out
out @ colorhtm()
out.write("color.htm")
shell ("color.htm")

}

out @ colorhtm()
As you can see, the result of the colorhtm text function is output to the out string. Using the follow ing commands, w e save the
obtained string to the file w hich is opened in the brow ser window . In our example, ellipses are substituted for the title and the end
of the html file.
text colorhtm
\ {

int vrgb 1 3§ k

uint cur

subfunc outitem

{
str zrgb
rgb.out4 ("$06X", vrgb)
@ item(rgb)
if ++cur == S$lcount
{
@"</TR><TR>"
cur = 0
}
}
for i = O0xFF, 1 >= 0, 1 -= 0x33
{
for j = OxFF, 3 >= 0, j -= 0x33
{
for k = OxFF, k >= 0, k -= 0x33
{
vrigh = (1 << 16) + (j << 8) + k
outitem{()
}
}
}
for vrgb = OxFFFFFF, vrgb >= 0, vrgb -= 0x111111 : outitem()
for vrgb = O0xFF0000, vrgb > 0, vrgb -= 0x110000 : outitem()
for vrgb = 0x00FF00, vrgb > 0, vrgb -= 0x001100 : outitem()
for vrgb = 0x0000FF, vrgb > 0, vrgb -= 0x000011 : outitem()
}
o

Page 632

The \{...} command is used to insert the code into a text. outitem minorant function is defined like thisas:

rgb.outd ("$06X", vrgb)

@ item(rgb)

Here, using the local variable named vrgb, the string is created that contains the hexadecimal representation, then another text
function item is called for outputting the cell w ith the indicated color. The unary operator @ is used to output into the current string

or, if there is no string to the console. Then, w e determine the total number of cells in the row and add a new row to the table
w here approriate.

We use three embedded color cycles for searching possible values. Red, green or blue color components are affected by color
cycling. Then these color components are arranged in the vrgb variable and w e call the minorant function described above.

The next four color cycles display additional palette entries for gray, red, green and blue colors.
The \I command indicates the termination of a text function. By default, a text function w orks until the end of the file.

Let's take an example - a text function of cell entries.
We w ant a function that w orks like this:

text item(str rgb)

<TD ALIGN=CENTER><TABLE BGCOLOR=#\ (rgb) WIDTH=60><TR><TD> </TD></TR></TABLE>
\ (rgb)

</TD>

\!

As you can see, this is an HTML text that outputs the rgb color parameter. It is used as the background color of a table cell and for
the display of its value output under the table cell.

Exercise 2
Create a HTML file that contains the multiplication table.

Page 633

calendar

This lesson provides you w ith a little more practice w ith the text function.

Example 1
Create a month calendar, selected by a user, in HTML format.

We're betting that this example w ill make a lot more sense to you. So, how would w e do this? Let's use the main function from the
previous example and modify it; that is, a user enters the year required for creating a calendar.

congetstr("Enter a year: ", year)
out @ calendar(uint(year))
out.write("calendar.htm")

shell ("calendar.htm")

Now , w e describe a variable of datetime type in the calendar text function and set January 1 of the specified year into this
variable. Then w e output the title of the HTML file and start creating the calendar.

text calendar(uint year)
\{ datetime stime
stime.setdate(1, 1, year)
}<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Calendar for year \ (stime.year)</TITLE>
<STYLE TYPE="text/css">
<!--
BODY {background: #FFF; font-family: Verdana;}
H1 {text-align: center; margin: 5px;}
TABLE {border: 0; border-spacing: 7px;}
TD {padding: 3px; border: 1lpx solid; text-align: center;}
#copy {font-size: smaller; text-align: center;}
-—>
</STYLE>
</HEAD>
<BODY><H1>\ (stime.year)</H1>
<TABLE ALIGN=CENTER>

Notice that this calendar contains three columns and four row s. The first day of the w eek is stored w ith the help of the firstday
variable for the customer. dayofweek returns the day number for the current date value. The nameofmonth function returns
the name of the month in a user language.

firstday = firstdayofweek ()
dayofweek = stime.dayofweek
fornum i = 0, 4

{
@"\I<TR>"
fornum j = 1, 4
{
month = 1 * 3 + j
@"\1<TD>\ (nameofmonth (stemp, month))
<PRE>"
}
}

Now that w e have defined it, w e can use abbrnam e ofday function to obtain the abbreviated day name. It is essential to add
missing space characters, because the calendar includes characters w hich have the identical width. So, let's use each day name
w ith four characters.

fornum k = firstday, firstday + 7

{
@" \(abbrnameofday(stemp, k).setlen(2))"
}
@m A\1"
@n ".repeat((7 + dayofweek - firstday) % 7)

If dayofw eek function has the value 0, any Sunday is highlighted using red color. Our attention is turned to line feeds added after
the last day of the w eek. The number of strings output is stored in the lines variable in the follow ing w ay:

uint day =1

Page 634

uint lines
while day <= daysinmonth(year, month)

{
if !dayofweek : @""
@str(day++).fillspacel(4)
if !dayofweek : Q""
dayofweek = (dayofweek + 1) & 7
if dayofweek == firstday
{
@m A\1L"
lines++
}
}

Finally, the space characters are inserted into the last string and the missing row s are output in order to create the months w ith
the identical height.

@" ".repeat((7 + firstday - dayofweek) % 7)

while lines++ < 7 : @™ \1"
Q"</PRE>"

Frankly speaking, this task is difficult to comprehend because it provides a w ealth of HTML texts and extra formatting. On the other
hand, w e finally succeed in w riting this program.

Page 635

samefiles

This lesson focuses on file processing. Let's find the duplicate files on your computer. Moreover, w e try to make this task
enjoyable and useful, i.e. we will find the duplicate files using their contents, but their names are not required. Well, | suppose you
w ill be astonished by the results, w hen these operations have been completed.

Example 1
Find all files w hich have the same contents either in the required folder or in a drive.

Actually, task performance takes much time. Let's think of the algorithm that w ill make this task easy to perform. If the files differ in
size, they are not duplicate. So, from this assumption, first w e can get names and sizes of all compared files, w hich w ill be sorted
by size, after that it will be possible to compare them by size.

Let's declare the structure for data storage w ith help of the type command. We w ill store only a file name instead of its w hole path
in order to save memory. The index of the parent directory in the directory array will be stored in the field ow ner instead of full
name.

type finf

{
str name
uint size
uint owner

}

We need the follow ing global variables:

global

{
arr dirs of finf
arr files of finf
arr sizes of uint
str output

}

dirs - processed directory array.

files - files array.

sizes - array that contains files indices wiill be sorted.
output - string for result output.

The functions w ritten below are responsible for appending directories and files to the appropriate arrays.

func uint newdir(str name, uint owner)
func uint newfile(str name, uint size owner)

To find out more about these functions, read the source code. Functions append an element to the array and fill the element fields.
The scanfolder function is used to find all directories and files by the specified path. If the directory has been found, the element
w ill be appended to the dirs array; then this element is considered to be parent and the scanfolder function calls itself. If the file

has been found, the element will be appended to the files array. To make this task easier, w e don't take files w hich have size more
than 4GB, condition /cur.sizehiserves this purpose particularly.

func scanfolder(str wildcard, uint owner)

{
if cur.attrib & $FILE_ATTRIBUTE_DIRECTORY
{
scanfolder (cur.fullname + "*.*", newdir(cur.name, owner))
}
}

The scaninit function prepares the first call scanfolder using the starting path. Modifying these functions, you can use various
masks and specify size limits of the compared files for file searching.

func scaninit(str folder)

{

str wildcard

folder.fdelslash()
@"Scanning \ (folder)\n"
scanfolder((wildcard = folder).faddname("*.*"), newdir(folder, 0))

Page 636

}

After file scanning w e will sort obtained data. So, instead of sorting the files array, w e offer you the better w ay for process
speed-up: to create a new array that contains indices of the files and sort it. Actually, w hile sorting elements get moved faster,
thus elements of small size will be a better choice.

func int sortsize(uint left right)

{
return int(files[left->uint].size) - int(files[right->uint].size)
}
func sortfiles
{
uint i
@"Sorting...\n"
sizes.expand(*files)
fornum i, *sizes : sizes[1] = 1i
sizes.sort (&sortsize)
}

The sortfiles function fills the sizes array w ith indices of the files. First, an index equals to the sequence number. Then, the sizes
array will be sorted w ith help of the sortsize function. Such parameters as left and right are pointers to data. If elements of the
array w ere structures, they would be used as objects; how ever, the element of the sizes array is uint, so w e use the ->uint
operation. This expression: files[index].size returns the size of a specified file. The function returns a positive number if the
size of the left file is greater than the size of the right one, or a negative number if the size of the left file is less than the size of the
right one, or zero if the sizes of both files are equal.

The getdir and getfile functions retrieve the full path of a file using the value of the ow ner field. getdir passes recursively
through the first parent directory and makes up the full path as it comes back.

func str getdir(uint id, str ret)
func str getfile(uint id, str ret)

Let's jump to discussion of the main comparison function. In the loop w e look through all sorted files, w here the file of the least size
is the first one

func compare

{
fornum i, *sizes - 1
{
id = sizes[1]
if !*files|[id].name : continue

The files that are considered to be duplicate are ignored in this example. Names of duplicate files will be nulled.
found = 0

next = sizes[j =1 + 1]
while files|[id].size == files[next].size
{

In the given loop the current file is compared w ith the files of the same size that come next. Furthermore, w e miss the obtained
duplicate files. Comparison is made using the isequalfiles function from the standard library. In case of duplicate files, w e output
a message to the string output.

if *files|[next].name &&
isequalfiles(getfile(id, idname), getfile(next, nextname))

if !found
{

output @ "\1Size: \(files[id].size) ========\1\(idname)\1"
}

count++
(output @ nextname) @"\1"

found = 1

Page 637

files[next].name.clear()

}
if ++] == *sizes : break
next = sizes[J]

}
This fragment outputs partial results. i & 0x3F defines the output of the result after each 64th file.
if 1 && ! (1 & Ox3F)

{
@ "\rApproved files: \ (i) Found the same files: \ (count)"

}

Using these functions

func init
func search
func main<main

is not a difficult task. There can be a great number of files and directories, so w e reserve a place for some elements in the init

function in advance. Moreover, w e append one empty parent element to the dirs array in order to start directory numbering at 1.

We consider that the ow ner field equals to zero either if the directory is root. In other w ords, the directory has no zero index.

Exercise 2
Write a program for searching duplicate files on all local hard drives.

Page 638

	About
	Overview
	History
	License

	Language Syntax Reference
	Basic language elements
	Identifiers
	Numbers
	Strings
	Binary data
	Macros
	Collections

	The program structure. Preprocessor
	Comment. Character substitution
	The define command
	The ifdef command
	Macro expressions
	The include command
	The import command
	The public and private commands

	Types and variables
	The type command
	Type inheritance
	System type methods
	The global command
	Local variables

	Functions methods operators
	Function declaration: func
	Method declaration: method
	Redefining operator operations
	Declaring text function
	Properties
	The extern command
	Subfunction declaration: subfunc
	Returning variables

	Statements
	if-elif-else statement
	switch statement
	while and do statements
	for and fornum statements
	foreach statement
	return, break, continue instructions
	label and goto instructions
	with statement

	Expressions and operators
	Arithmetic operators
	Logical operators
	Assignment operators
	Type reduction
	Fields and pointers
	Calling functions and methods
	The conditional operator ?
	Late binding operation
	Table of operator precedence

	Appendix
	Gentee Language in BNF

	How to launch Gentee
	Quick Launch
	Launch from Command Line
	Using '#!' command
	Compilation profiles

	Library Reference
	Array
	 * arr
	 foreach var,arr
	 arr of type
	 arr[i]
	arr.clear
	arr.cut
	arr.del
	arr.expand
	arr.insert
	arr.move
	arr.sort

	Array Of Strings
	 arrstr = type
	str = arrstr
	 arrstr += type
	arrstr.insert
	arrstr.load
	arrstr.read
	arrstr.replace
	arrstr.setmultistr
	arrstr.sort
	 arrstr.unite...
	arrstr.write
	arrstr

	Array Of Unicode Strings
	 arrustr = type
	ustr = arrustr
	 arrustr += type
	arrustr.insert
	arrustr.load
	arrustr.read
	arrustr.setmultiustr
	arrustr.sort
	 arrustr.unite...
	arrustr.write
	arrustr

	Buffer
	 * buf
	 buf[i]
	buf = buf
	buf + buf
	 buf += type
	buf == buf
	 buf(type)
	buf.align
	buf.append
	buf.clear
	buf.copy
	buf.crc
	buf.del
	buf.expand
	buf.free
	buf.findch
	buf.getmultistr
	buf.getmultiustr
	buf.insert
	buf.ptr
	buf.read
	buf.replace
	buf.reserve
	buf.write
	buf.writeappend

	Clipboard
	clipboard_gettext
	clipboard_empty
	clipboard_settext
	buf.getclip
	buf.setclip
	str.getclip
	str.setclip
	ustr.getclip
	ustr.setclip

	Collection
	 * collection
	 collection[i]
	collection = collection
	collection += collection
	collection + collection
	 foreach var,collection
	collection.append
	collection.clear
	collection.gettype
	collection.ptr
	 colitem

	COM/OLE
	 COM/OLE description
	 VARIANT
	 type = VARIANT
	 VARIANT = type
	 type(VARIANT)
	oleobj.createobj
	oleobj.getres
	oleobj.iserr
	oleobj.release
	variant.arrcreate
	variant.arrfromg
	variant.arrgetptr
	variant.clear
	variant.ismissing
	variant.isnull
	variant.setmissing

	Console
	congetch
	congetstr
	conread
	conrequest
	conyesno

	CSV
	 foreach var,csv
	csv.append
	csv.clear
	csv.read
	csv.settings
	csv.write

	Date & Time
	datetime = datetime
	datetime += uint
	datetime -= uint
	datetime - datetime
	datetime + datetime
	datetime == datetime
	 datetime < datetime
	 datetime > datetime
	abbrnameofday
	days
	daysinmonth
	firstdayofweek
	getdateformat
	getdatetime
	gettimeformat
	isleapyear
	nameofmonth
	datetime.dayofweek
	datetime.dayofyear
	datetime.fromstr
	datetime.gettime
	datetime.getsystime
	datetime.normalize
	datetime.setdate
	datetime.tostr
	filetime = filetime
	filetime == filetime
	 filetime < filetime
	 filetime > filetime
	datetimetoftime
	ftimetodatetime
	getfiledatetime
	datetime
	filetime

	Dbf
	 * dbf
	 foreach var,dbf
	dbf.append
	dbf.bof
	dbf.bottom
	dbf.close
	dbf.create
	dbf.del
	dbf.empty
	dbf.eof
	dbf.geterror
	dbf.go
	dbf.isdel
	dbf.open
	dbf.pack
	dbf.recno
	dbf.skip
	dbf.top
	dbf.f_count
	dbf.f_date
	dbf.f_decimal
	dbf.f_double
	dbf.f_find
	dbf.f_int
	dbf.f_logic
	dbf.f_memo
	dbf.f_name
	dbf.f_offset
	dbf.f_ptr
	dbf.f_str
	dbf.f_type
	dbf.f_width
	dbf.fw_date
	dbf.fw_double
	dbf.fw_int
	dbf.fw_logic
	dbf.fw_memo
	dbf.fw_str

	Files
	file.close
	file.getsize
	file.gettime
	file.open
	file.read
	file.setpos
	file.settime
	file.write
	copyfile
	copyfiles
	createdir
	deletedir
	deletefile
	delfiles
	direxist
	fileexist
	getcurdir
	getdrives
	getdrivetype
	getfileattrib
	getmodulename
	getmodulepath
	gettempdir
	isequalfiles
	movefile
	setattribnormal
	setcurdir
	setfileattrib
	verifypath
	finfo
	ffind
	 foreach var,ffind
	ffind.init
	getfileinfo

	FTP
	ftp.close
	ftp.command
	ftp.createdir
	ftp.deldir
	ftp.delfile
	ftp.getcurdir
	ftp.getfile
	ftp.getsize
	ftp.gettime
	ftp.lastresponse
	ftp.list
	ftp.open
	ftp.putfile
	ftp.rename
	ftp.setattrib
	ftp.setcurdir

	Gentee API
	gentee_call
	gentee_compile
	gentee_deinit
	gentee_getid
	gentee_init
	gentee_load
	gentee_ptr
	gentee_set
	gentee
	compileinfo
	optimize

	Hash
	 hash of type
	 * hash
	 hash[name]
	 foreach var,hash
	hash.clear
	hash.create
	hash.del
	hash.find
	hash.ignorecase
	hash.sethashsize
	hash

	HTTP
	http_get
	http_getfile
	http_head
	http_post

	INI File
	ini.delkey
	ini.delsection
	ini.getnum
	ini.getvalue
	ini.keys
	ini.read
	ini.sections
	ini.setnum
	ini.setvalue
	ini.write
	inigetval
	inisetval

	Keyboard
	sendstr
	sendvkey

	Math
	abs
	acos
	asin
	atan
	ceil
	cos
	exp
	fabs
	floor
	ln
	log
	modf
	pow
	sin
	sqrt
	tan

	Memory
	malloc
	mcmp
	mcopy
	mfree
	mlen
	mmove
	mzero

	ODBC (SQL)
	 ODBC description
	odbc.connect
	odbc.disconnect
	odbc.geterror
	odbc.newquery
	odbcquery.active
	odbcquery.close
	odbcquery.fieldbyname
	odbcquery.first
	odbcquery.geterror
	odbcquery.getrecordcount
	odbcquery.last
	odbcquery.moveby
	odbcquery.next
	odbcquery.prior
	odbcquery.run
	odbcquery.settimeout
	odbcfield.getbuf
	odbcfield.getdatetime
	odbcfield.getdouble
	odbcfield.getindex
	odbcfield.getint
	odbcfield.getlong
	odbcfield.getname
	odbcfield.getnumeric
	odbcfield.getstr
	odbcfield.gettype
	odbcfield.isnull

	Process
	argc
	argv
	exit
	getenv
	process
	setenv
	shell

	Registry
	regdelkey
	regdelvalue
	reggetmultistr
	reggetnum
	regkeys
	regsetmultistr
	regsetnum
	regvaltype
	regvalues
	regverify
	buf.regget
	buf.regset
	str.regget
	str.regset

	Socket
	inet_close
	inet_error
	inet_init
	inet_proxy
	inet_proxyenable
	inetnotify_func
	socket.close
	socket.connect
	socket.isproxy
	socket.recv
	socket.send
	socket.urlconnect
	str.iencoding
	str.ihead
	str.ihttpinfo
	str.iurl
	httpinfo
	inetnotify
	socket

	Stack
	stack.pop
	stack.popval
	stack.push
	stack.top
	stack

	String
	 * str
	str + str
	str = str
	 str += type
	str == str
	 str < str
	 str > str
	 str(type)
	 type(str)
	str.append
	str.appendch
	str.clear
	 str.copy...
	str.crc
	str.del
	str.dellast
	 str.eqlen...
	 str.fill...
	 str.find...
	 str.hex...
	str.insert
	str.islast
	str.lines
	str.lower
	str.out4
	str.print
	str.printf
	str.read
	str.repeat
	str.replace
	str.replacech
	str.setlen
	str.split
	str.substr
	 str.trim...
	str.upper
	str.write
	str.writeappend
	spattern
	spattern.init
	spattern.search
	str.search

	String - Filename
	str.faddname
	str.fappendslash
	str.fdelslash
	str.ffullname
	str.fgetdir
	str.fgetdrive
	str.fgetext
	str.fgetparts
	str.fnameext
	str.fsetext
	str.fsetname
	str.fsetparts
	str.fsplit
	str.fwildcard

	String - Unicode
	 * ustr
	 ustr[i]
	ustr + ustr
	 ustr = type
	 str = ustr
	 ustr += type
	str == ustr
	 ustr < ustr
	 ustr > ustr
	 ustr(str)
	 str(ustr)
	ustr.clear
	ustr.copy
	ustr.del
	ustr.findch
	ustr.fromutf8
	ustr.insert
	ustr.lines
	ustr.read
	ustr.replace
	ustr.reserve
	ustr.setlen
	ustr.split
	ustr.substr
	ustr.toutf8
	 ustr.trim...
	ustr.write

	System
	max
	min
	callback
	freecallback
	getid
	destroy
	new
	sizeof
	type_delete
	type_hasdelete
	type_hasinit
	type_init

	Thread
	thread.create
	thread.getexitcode
	thread.isactive
	thread.resume
	thread.suspend
	thread.terminate
	thread.wait
	exitthread
	sleep

	Tree
	 tree of type
	 * tree
	 * treeitem
	 foreach var,treeitem
	tree.clear
	tree.del
	tree.leaf
	tree.node
	tree.root
	treeitem.changenode
	treeitem.child
	treeitem.data
	treeitem.getnext
	treeitem.getprev
	treeitem.isleaf
	treeitem.isnode
	treeitem.isroot
	treeitem.lastchild
	treeitem.move
	treeitem.parent

	XML
	 XML description
	 foreach var,xmlitem
	xml.addentity
	xml.getroot
	xml.procfile
	xml.procstr
	xmlitem.chtag
	xmlitem.findtag
	xmlitem.getattrib
	xmlitem.getchild
	xmlitem.getchildtag
	xmlitem.getchildtext
	xmlitem.getname
	xmlitem.getnext
	xmlitem.getnexttag
	xmlitem.getnexttext
	xmlitem.getparent
	xmlitem.gettext
	xmlitem.isemptytag
	xmlitem.ispitag
	xmlitem.istag
	xmlitem.istext

	Samples
	hello
	square
	easymath
	primenumber
	fileattrib
	runini
	easyhtml
	calendar
	samefiles
	To be continued

