
Gentee overview
Introduction
The Gentee programming language can be classified as a procedure-oriented language with some features
typical of object-oriented programming. It has no complicated constructions and is easy to use, but at the
same time it is a powerful tool for solving all kinds of tasks. The syntax of the language is based on the
syntax of the C programming language and it has a lot in common with other C-like languages C++, Java,
C#. Gentee has the same numeric types int, uint, byte, ubyte, long, double, float, ... and can perform the
same operations with them +, ==, <, >, -, /, +=, ++, --, /=,... as in other similar programming languages.
When you write programs, you can use all basic constructions that you come across in other languages. For
instance, such as while, if, for, with, foreach, switch, include .

The compilation unit in Gentee is a declaration command. Below you can see the sample declarations of
global variables and macros.

global

{

 uint i my = 0xFF

 str name = "Alexey"

 arrstr colour = %{"red", "green", "blue" }

}

define

{

 PATH = $"c:\temp\docs"

 FLAG = 0x0001

}

While it is enough to specify the name and parameters (in case of a function) in order to access a variable
or call a function, you have to add '$' to the left in order to substitute a macro. The values of macros are
substituted during compilation.

i = my | $FLAG

Types
Besides basic numeric and built-in types buf, str, collection, it is possible to declare your own types using
the type command.

type mytype_a

{

 uint id

 str name

}

Variables of any type do not require additional initialization after their declaration, you can access them at
once. Type fields are accessed with the help of the '.' operation. Types can be inherited (the same as in
object-oriented languages) and the polymorphism of operations is provided for. If there is no method or
function for some variable of a certain type, similar methods for its parent types will be searched for. It is
possible to define and use operations used for numeric types (=, +=, ==, !=) and the foreach loop for any
types.

type mytype_b<inherit = mytype_a> : double d

operator mytype_b =(mytype_b left, mytype_a right)

{

 left.id = right.id

 left.name = right.name

 return left

}

Functions

Page 1

Gentee has three kinds of commands for determining the executable code: func, method, operator. The
program is executed starting from the function that has the main attribute.

func - A regular function responsible for performing operations specified in it.

func hello< main >

{

 print("Hello, World!")

 getch()

}

method - A function linked to a certain type. Calling a method is similar to taking a field of a type and is
performed with '.' with the name and parameters of the method following it.

method uint str.islastchar(uint ch)

{

 return this[*this - 1] == ch

}

func myfunc

{

 str my = "String"

 print(my.islastchar('g'))

}

operator - This command allows you to define assignment, comparison, arithmetical and other operators and
use them later for any types.

operator str +=(str left, uint i)

{

 return left += str(i)

}

func myfunc : print("Value = " += 100)

Gentee is a strongly-typed language. It imposes certain limitations on programming, but it considerably
reduces the possibility of mistakes on the other hand. Several functions and methods with the same names
can exist, but they must have at least one different parameter or a different number of parameters.

Strings
Gentee has wide capabilities regarding working with strings. Strings are defined with the help of double
quotation marks and have the control character '\'. If a string begins with '$', it will not take the control
character into account. Besides inserting special characters, the control character allows you to insert data
from files, calculate and insert expressions inside a string and also insert macros.

print("Name = \(name += " gentee") Path = \$PATH\n")

It is often necessary to output some large amounts of text and part of this text is to be generated
dynamically. It is convenient to use text functions in this case. They can output data to the string you
specified while calling them or to the console.

text mytext(uint x)

Some text

x = \(x)

x * x = \(x*x)

\{ uint i

 fornum i, 5

 {

 @"x * \(i) = \(x * i)\l"

 }

Page 2

}

Some text

\!

Importing functions and using Gentee in other applications
From the very beginning Gentee has been developed in such a way that it would be possible to import
functions from DLL (or similar modules in other operating systems) on the one hand and that it would be
possible to use the Gentee compiler from programs written in other programming languages on the other
hand.

If you need to import functions from a DLL, just specify the name of the DLL file and declare the imported
functions.

import "kernel32.dll" {

 uint CloseHandle(uint)

 ExitProcess(uint)

 uint GetModuleFileNameA(uint, uint, uint) ->

GetModuleFileName

}

If you want to compile files in the Gentee language and execute them from your application, just take the file
gentee.dll and call the necessary interface functions. You can use the module gentee.dll free of charge, but
you must comply with the license agreement.

Conclusion
Here are a few words about how the compiler works. The source code of the compiler in the C programming
language is publicly available since Gentee is an open source project. The compilation rate is very high. As a
result of compiling a program, you get a byte code that can be saved to a file or executed at once. It is
possible to run the saved byte code without the second compilation or use it as a library module in other
programs. Note that there is a set of ready libraries available and it is being constantly updated, which helps
to create programs of any complexity. Besides, it is possible to create executable (exe) files.

We have described only the main things typical of the Gentee programming language. You can always find
additional information on this site and discuss any questions with the developers and other users of Gentee.

Page 3

How Gentee was created
Alexey Krivonogov

The idea of creating my ow n programming language occurred to me at the end of the 1990's. I w as w orking on installation
softw are at the time, and I realized that I needed a simple scripting language that w ould make programming easier and more
comfortable. I started experimenting by creating simple languages, and by 2002 I felt that my w ork had yielded some real results.
My brother joined me in this w ork, and w e created the test version of the language soon after. It w asn't really the prototype of
Gentee, but it gave us an idea of w hat our future language ought to be like, and in the process w e gained invaluable experience.

In 2003 I stopped w orking on other projects and seriously got dow n to developing Gentee. Neither my brother nor I could devote all
our time to Gentee, so development took more than a year. Our most difficult task w as deciding on the syntax and features of the
language. We developed Gentee as a procedure-based programming language. We refused to use objects and classes in their
usual sense (although it should be mentioned that the language has both type inheritance and polymorphism now). We based the
language on C-like syntax because this has stood the test of time, and has achieved an iconic status. We w anted to make a
compact and fast compiler. And w e w anted to make it possible to use Gentee from other applications via a small DLL file, so w e
w ere careful not to overload the language.

We can't say that everything w ent smoothly. Some problems took us several days to solve. Some of our solutions didn't w ork, and
w e had to do some things all over again. We even had to disallow some other features. And so Gentee became the language w e
w anted it to be - a personal and subjective language for sure!

The first public version of the compiler w as published on the Internet on Novem ber 1, 2004. This date can be considered the
birthday of the language. After that w e regularly released versions w ith new features - w e even released a version for Linux. In
June 2006 w e made Gentee an open source project. Although the compiler had been free from the very beginning, w e decided
not to publish the source code w e had at that time, but instead to rew rite everything from scratch. The language had already
become stable by then, but w e w anted to complete some things and rew rite some others. It took more than a year for us to rew rite
the compiler because of interruptions by other jobs, but w e w ere determined and enthusiastic in our commitment to Gentee. You
could say that Gentee w as re-born in August / September, 2007.

Now that the source code of the compiler and libraries is open, w e look forw ard w ith excitement to seeing how Gentee develops
and improves through the efforts and expertise of its users.

Page 4

The Gentee Open Source License (MIT License)
Copyright (c) 2006-2009 The Gentee Group. All rights reserved.

1. Permission is hereby granted, free of charge, to any person obtaining a copy of this softw are and associated documentation
files (the "Softw are"), to deal in the Softw are w ithout restriction, including w ithout limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Softw are, and to permit persons to w hom the Softw are is furnished to do
so, subject to the follow ing conditions:

2. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Softw are.

3. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The Gentee Group can be contacted at info@gentee.com.

For more information on the Gentee Group and the Gentee Open Source project, please see w w w .gentee.com.

Page 5

mailto:info@gentee.com?subject=Gentee
http://www.gentee.com/

Language Syntax Reference
You have opened the manual on the syntax and semantics of the Gentee programming language. All syntactic language
constructions are described here. Programming opportunities offered by the language are also described here.

This manual is not a textbook on programming. It contains the description of the official version of the language from the developers
of the Gentee compiler.

Gentee is a procedural, high-level language. Its syntax has much in common w ith the syntax of C/C++. (This should help users
master many of Gentee's features quickly.) Like the Java or C# languages, a source program is compiled into object code, w hich
is then executed by a virtual machine.

Table of contents
 Basic language elements
 Identifiers
 Numbers
 Strings
 Binary data
 Macros
 Collections

 The program structure. Preprocessor
 Comment. Character substitution
 The define command
 The ifdef command
 Macro expressions
 The include command
 The import command
 The public and private commands

 Types and variables
 The type command
 Type inheritance
 System type methods
 The global command
 Local variables

 Functions methods operators
 Function declaration: func
 Method declaration: method
 Redefining operator operations
 Declaring text function
 Properties
 The extern command
 Subfunction declaration: subfunc
 Returning variables

 Statements
 if-elif-else statement
 sw itch statement
 w hile and do statements
 for and fornum statements
 foreach statement
 return, break, continue instructions
 label and goto instructions
 w ith statement

 Expressions and operators
 Arithmetic operators
 Logical operators
 Assignment operators
 Type reduction
 Fields and pointers
 Calling functions and methods
 The conditional operator ?
 Late binding operation
 Table of operator precedence

 Appendix

Page 6

 Gentee Language in BNF

Page 7

Identifiers
Identifiers are names that are used to refer to variables, types, functions, methods, etc. Identifiers can consist of alphanumeric
characters and the underscore character. A name may begin only w ith a letter or the underscore character. It is permissible to use
letters of the English alphabet as w ell as characters w hose code is betw een 0x80 and 0xFF, but w e recommend that you use
only letters of the English alphabet to ensure that variable names are displayed correctly on other computers. The length of a name
is limited to 255 characters. Sample valid names: _m y12, tem p, MainFunction. Names are case-sensitive: MyFunc and m yfunc
are tw o different names.

The language has some reserved names that cannot be used as identifiers. These are called keyw ords, and they are used to
define constructions or objects in the language. The keyw ords are listed below :

as, break, case, continue, default, define, do, elif, else, extern, for, foreach, fornum , func, global, goto, if, ifdef,
im port, include, label, m ethod, of, operator, return, sizeof, subfunc, sw itch, text, this, type, w hile, w ith, inherit.

Page 8

Numbers
The Gentee language has several numeric types. There are several w ays to specify natural numbers or integers.

Decimal form
The most w idely used form.

Example: 65, -45367, 0

Hexadecimal form
Numbers must begin w ith 0X or 0x. Characters from A to F can be used in upper or low er case.

Example: 0xÂA23, 0x1d2f, 0XFFFFFF

Binary form
Numbers in binary form must begin w ith 0b or 0B and consist only of 0 or 1.

Example: 0b11001, 0B1010110110, 0b10101011000011

Character code
You can specify a specific character instead of the number corresponding to it, by enclosing the character in single quotation
marks.

Example: 'A', '(', 'k ', '2', '='

Gentee also has types called long and ulong. Each type occupies 8 bytes. To define such numbers, add L or l at the end.

Example: 23l, 0xfaafd45fff67fffL, -24363627252652L

Real numbers
There are tw o types of real numbers: double and float. A number w ith a decimal point or w ith a mantissa is of the double type.
To define a number of the float type, you should add F or f at the end. To specify a number of the double type w ithout a decimal
point and a mantissa, you should add D or d at the end.

Examples of double numbers: 123.122, -123.2å-2, 789D

Examples of float numbers: 12.75f, 0.55F, -78F

Page 9

Strings
Strings are define w ith a pair of double quotation marks in the language. If tw o stings come in a row , they w ill be combined into
one string. By default, constant strings cannot be specified in the Unicode encoding. Gentee has Unicode strings (ustr) and you
can use the UTF-8 encoding in constant strings for later conversion into Unicode. Simple string variables are defined w ith the str
type specified.

"It is a simple string

consisting of two lines."

There is a special character '\' that allow s you to perform various operations or substitutions. You can see the list of commands
w ith the special character below .

\\ The command character output.

"c:\\temp\\readme.txt"

\" A single quotation mark.

"This is \"Super Team\"!"

\n Line feed, code 0x0A.
\r Carriage return, code 0x0D.
\t Horizontal tabulation, code 0x09.
\l End-Of-Line - combination \r\n. It might be useful for output to a text file.
\0XX Combination of command character and zero follow ed by a number of character in hexadecimal notation makes any
character w ith code from 0 to 255 put in a string.
\#Remove the preceding carriage returns or spaces and tab characters. Only either carriage returns or spaces and tab characters
are removed depending on w hat precedes the special character. \ 0xd 0xaIf a string just ends w ith the special character, the
carriage return characters that follow w ill be deleted. It is convenient to split a too long string this w ay.

"Line 1\r\nLine 2\l Line \033 \

Line 3 too"

...\ Comments. You can insert any comments into the string.
\$m acro$ In-line insertion of preprocessor macro. The last dollar sign '$' is optional if this sign is follow ed neither by letter nor
by digit.

"Name: \$NAME Company: \$COMPANY *Users name and company*\"'

\(expression) Outputting a result of the expression. In parentheses there might be an expression of any type, w here string
conversion occurs.
\< filenam e > Content of the specified file is inserted. File name in the angle brackets must be specified as a macro string, i.e.
ignoring the command character.

"5 + 10 = \(5 + 10) Variable = \(var)\l \<c:\temp\my.txt>"

\[idnam e]If you have a long string and w ant to disable the special character in some part of it, specify any combination of any
characters in square brackets. You do not even have to specify any additional character. To enable the special character later,
just specify the same combination in square brackets.

"\[] \k\l\m [] \$NAME$ \[.S] \o\p\r [.S] \$COMPANY"

Note, there is also a macro string. Like the string, a macro string is enclosed in quotation marks; moreover, they are preceded by a
dollar sign '$'. Unlike the string, the macro string does not use a command character, but it replaces macros w hich appear in a
string. This type of a string is very appropriate for pointing file paths.

define {

 mypath = $"c:\myfolder\subfolder"

 myname = "application"

 myext = "exe"

}

...

s = $"$mypath\$myname$123.$myext"

s1 = "\$mypath\\\$myname$123.\$myext"

// s = s1 = c:\myfolder\subfolder\application123.exe

Page 10

Binary data
Binary data is defined w ith a pair of single quotation marks. Numbers in the decimal and hexadecimal form and strings can be
elements of binary data. Numbers can be separated by spaces, commas, carriage returns and semicolons. The buf type
corresponds to binary data.

Combinations w ith the special '\' character are used to specify various elements.

...\ Comments. You can insert any comments into the binary data.

\$m acro$ Macro value is inserted into the binary data. If the last sign '$' is follow ed by neither a digit nor a letter, it is considered
to be optional.

\(expression) A result expression is inserted. An expression of any type enclosed in parentheses is to be converted into the
binary data.

\< filenam e > Contents of the required file is inserted. A file name enclosed w ithin angle brackets must be w ritten as a macro
string, i.e. the command character is ignored.

\"ñòðîêà" The macro string is inserted into the binary data. It is important to note that the Null character is not appended to the
end of a string. The Null character is appended if the string is enclosed in parentheses \("string").

\h Insertion mode of numbers in hexadecimal notation. The numbers 2, 4, 8, are follow ed then, w hich indicate the total number
size in bytes. If the number size is not specified, numbers are considered to be bytes. Keep in mind that hex digits are read in
byte-read mode by default.

\i The read mode of decimal numbers. Numbers can be represented in floating-point notation in this mode. The size number of 2,
4 or 8 can also be indicated after i.

'5 \(50 + 45) afdcCCAB FF * comments *\

 \h 567, 12 ; \"string" 45 \i4 255 3 +356 -1 45.56'

'0 FF fe fd ab cd 1a 2b 3c 4d 5e 6f \<c:\temp\my.exe>'

Page 11

Macros
Macros are constants that are substituted during compilation. Macros can be used as identifiers, numbers, strings, binary data and
collections. To substitute a macro for its value, you should specify the name of the macro betw een the '$' characters. If a macro is
follow ed by a character that cannot be used in a name, you can leave out the '$' character at the end. Macros are not variables
and you cannot assign any values to them. Macros are defined w ith the define command. You can also use macros for
conventional compilation in the ifdef statement.

define {

 a = "str"

 b = 10

}

...

print("\aing \($b + 20)")

There are the follow ing predefined macros. You cannot redefine them.

Predefined macros

$_FILE The full name of the current source file.

$_LINE The current line of the source file.

$_DATE The current date in the format DDMMYYYY.

$_TIME The current time in the format HHMMSS.

$_WINDOWS Equals 1 in Window s.

$_LINUX Equals 1 in Linux.
Related links

 The define command
 The ifdef command
 Macro expressions

Page 12

Collections
Collections make it possible to store data of different types together. Besides, they can be used to initiate arrays and any other
structures. Also, collections can be used to pass an undefined number of parameters of different types to functions and methods.
The collection type corresponds to collections. Collections are defined w ith braces %{ ... }. You can specify different types of
data or other collections separating them by commas insides braces. Global variables can be initialized by collections w hich
contain only constants.

global

{

 arrstr months = %{"January", "February", "March", "April", "May",

 "June", "July", "August", "September", "October", "November", "December" }

}

In order to initialize a structure w ith the help of collection, the appropriate assignment operator is required to be defined.

type test

{

 uint num

 str string

}

operator test =(test left, collection right)

{

 if right.gettype(0) != uint : return left

 left.num = right.val(0)

 if right.gettype(1) != str : return left

 left.string = right.val(1)->str

 return left

}

After that, a value is assigned to the fields, as follow s:

test myt

myt = %{ 10, "test string" }

Using the collection argument in the function, you are able to pass a variable number of arguments of different types.

func outvals(collection cl)

{

 uint i

 fornum i,*cl

 {

 print("\(i) = \(cl[i])\n")

 }

}

The function call has the form.

outvals(%{ 10, 20, 30, 40 })

Page 13

The program structure. Preprocessor
A program in the Gentee language can consist of one or several files. The main element of the program is a command. The
command starts on a new line, most commands contain blocks enclosed in curly braces { }. It is possible to divide all commands
into four groups by their purpose.

Preprocessor commands
The preprocessor is responsible for the substitution of macro values, the replacement of service characters and conditional
compilation. The preprocessor performs its operations right during the compilation of the current fragment of the source code.

The define com m and The definition of macros.

The ifdef com m and Conditional compilation.
Executable code commands
These commands contain statements and are responsible for the executable part of the program.

The extern com m and Predefined functions, methods and operations.

func Function.

Method declaration: m ethod Method declaration.

Redefining operator operations Operator redefinition.

Properties Function-property.

text Text function declaration.
Definitions of types and global variables

The type com m and Declaring type.

The global com m and Global variable declaration.
Other commands

The include com m and Including Gentee files.

The im port com m and Importing functions from DLL.

The public and private com m ands Name protection commands.

This is an example of the simplest program.

/* Example */

define

{

 NAME = "John"

}

func main<main>

{

 print("Hello, \$NAME!")

 getch()

}

Page 14

Comment. Character substitution
When running, the compiler deletes all comments, replaces macros w ith their values and replaces the formatting characters.

/*...*/ Comments can appear anyw here. A comment begins w ith a forw ard slash/asterisk combination /* and is terminated by end
comment delimiter */.
// Single-line comments. These comments are terminated by the End-of-Line characters.

/*

 This is a comment.

*/

a = 4 + 5 // This is a comment too.

; The new line character is the separating character betw een expressions and statements. A semicolon is replaced w ith a new
line character. You can use this character if you w ant to put several statements on one line.
: A colon is replaced w ith an opening curly brace and a closing curly brace is added at the end of the current line.

// These examples are equal

if a == 10 : a = b + c; c = d + e

if a == 10

{

 a = b + c

 c = d + e

}

Page 15

The define command
The define command is used to specify macros. You can assign a constant to a macro, w hich applies to the follow ing types of
constants: a number, a string, a binary data or an identifier name, furthermore, you can assign a macro to the value of another
macro. Later on, the name of the macro should be specified as $m acronam e or $m acronam e$ for it to be replaced w ith its
value. It is possible to redefine a macro in other define . Macros are defined enclosed w ithin curly braces, and each line contains
only one macro definition. The macro definition consists of a name follow ed by the equal sign = and the appropriate constant or an
expression. We recommend that you use only uppercase letters in the names of macros.

define

{

 A = 0xFFFF; B = 3.0

 NAME = "First and Last Name:"

 ID = idname

 BB = $B

}

Attributes
You can specify the export and nam edef attributes for define . Use the export attribute if you distribute the module as byte
code (a .ge file) and w ant to make it possible to use these macros in other programs. If define has the nam edef attribute, all its
macros can be used w ithout specifying the '$' character.

define <export namedef>

{

 FALSE = 0

 TRUE = 1

}

func uint my(uint param)

{

 if param >20 : return FALSE

 if param <10 : return $FALSE // $FALSE == FALSE

 return TRUE

}

Specifying name for define
You can specify a name for define . In this case, it is possible to access macros both directly and specifying the define name. It is
made in order to avoid conflicts betw een macros from various modules. In this case, access to a macro looks like this:
$definenam e.m acronam e .

// file1.g

define myflag< export >

{

 FLAG1 = 0xFFF0

 FLAG2 = 0xFFF1

}

// file2.g

define flags

{

 FLAG1 = 0x0001

 FLAG2 = 0x0002

}

func uint my(uint param)

{

 if param & $myflag.FLAG1

 { ... }

 if param & $flags.FLAG1

 { ... }

}

Enumeration
Gentee has no separate command for defining enumerations. You can use the define command for that. If a macro has no value
assigned to it, its value becomes one time greater than the value of the previous macro. If there is no previous macro or it is not an
integer, the value of the current macro is set to 0. Macros can be separated by spaces in case of enumeration.

define

Page 16

{

 VAL0 VAL1 VAL2 // VAL2 = 2

 ID1 = 100

 ID2 ID3 ID4

 ID5 // ID5 = 104

}

Expressions
Not only numbers, but also expression results can be assigned to macros. Either constants or other macros can be operands in
expressions. You can take a look at the full list of possible operations on the Macro expressions page.

define

{

 VAL0 = 10 + 245

 VAL1 = $VAL0 + (12 - 233)

 VAL2 = $VAL1 & 0xFFFF

 SUMMARY = $VAL0 | $VAL1 | $VAL2

}

Related links
 The ifdef command
 Macros
 Macro expressions

Page 17

The ifdef command
The ifdef command of conditional compilation allow s you to include and exclude some parts of the program for compilation
depending on some conditions. A conditional expression must follow the ifdef keyw ord and the part of the program that should be
compiled if the condition is met (not equal to 0) should come after it in curly braces. You can use an expression consisting of
macros and constants as a condition (a number, a string, a binary data). You can take a look at all possible operation for
expressions on the Macro expressions page.

In the example below the m yfunc function w ill be compiled if the macro $MODE is a number not equal to 0 and not an empty
string.

ifdef $MODE

{

 func myfunc(uint param)

 { ... }

}

You can use ifdef not only on the top embedment level, but also inside any other command and even inside expressions. Besides,
it is possible to embed ifdef commands inside each other.

func myfunc(uint param)

{

 uint i = param

 ifdef $ABC == 3 || $NAME == "Private"

 {

 i *= 2 + ifdef !$MODE { 100 } else {200}

 }

 ...

}

elif and else
If the condition is false and another part of the program should be compiled, the else command is used. If there are more than tw o
variants of compilation, you can use the elif command w ith an additional condition. You can have several elif commands in a row
and the else command at the end.

define

{

 ifdef $MODE == 5

 {

 NAME = "Public"

 MODE= 10

 }

 elif $MODE == 4

 {

 NAME = "Debug"

 }

 elif $MODE > 5 : NAME = "Private"

 else : NAME = "Unknown"

}

Related links
 The define command
 Macros
 Macro expressions

Page 18

Macro expressions
When you define macros w ith the help of The define com m and and in The ifdef com m and, you can use simple expressions
w ith constants and macros. Operands must be of the same type except for logical operations && and ||. It is possible to use
parentheses to specify the order of calculating the expression.

Operation Type of operands Type of result
Arithm etic operators
+ int uint long ulong float double int uint long ulong float double
- int uint long ulong float double int uint long ulong float double
* int uint long ulong float double int uint long ulong float double
/ int uint long ulong float double int uint long ulong float double
Bit operators
& int uint long ulong int uint long ulong
| int uint long ulong int uint long ulong
^ int uint long ulong int uint long ulong
Logical operators
&& int uint long ulong float double str(1 if the length >0) buf(1 if the length >0) int uint
|| int uint long ulong float double str(1 if the length >0) buf(1 if the length >0) int uint
Com parison operators
== int uint long ulong float double str buf int uint
!= int uint long ulong float double str buf int uint
>= int uint long ulong float double int uint
<= int uint long ulong float double int uint
> int uint long ulong float double int uint
< int uint long ulong float double int uint
Unary operators
+ int uint long ulong float double int uint long ulong float double
- int uint long ulong float double int long float double
~ int uint long ulong int uint long ulong
! int uint long ulong float double str(1 if the length >0) buf(1 if the length >0) int uint

7 + $YEAR - 2000

2.3 * (VAL1 - $VAL0 / 2.0)

$VALFLAG | 0xff00

$MODE1 || ($MODE2 == 3 && $COMPILE == "WINDOWS")

$PROGNAME != "My Application" && $PROG != "Debug"

Related links
 The define command
 Macros
 The ifdef command

Page 19

The include command
The include command is used to include additional files w ith source code in the Gentee language or w ith already compiled byte
code. You can include ready-made libraries and use their functions after that or combine several modules into one project. If you
specify a file w ith the .ge extension that contains compiled byte code, it is included w ithout additional compilation. If some file is
included more than once, the compiler ignores the repeated inclusions of the file.

Included files are listed inside curly braces, either one file on a line or they must be separated by commas. You can specify both
absolute and relative paths to files. The names of files are strings that is w hy it is necessary to either double the '\' character or
put '$' before the braces.

include

{

 "myfile1.g"

 $"c:\path\myfile2.g"

 "c:\\mylib\\mylib.g"

 $"$MYLIB\library.g"

 $"..\src\library.g"

}

The include command can be used in any place of the program and in any Gentee files. You can specify include inside the ifdef
command.

ifdef $MYPROG

{

 include : "myfile1.g"

}

// OR

include

{

 ifdef $MYPROG : "myfile1.g"

}

You can configure the compiler profiles in such a w ay that you alw ays include certain files and then you do not have to define
them w ith include . You can also list directories to search for files in a profile. In this case, it w ill be enough for you to specify only
the file names in the include command and the compiler w ill automatically find them in these directories.

Page 20

The import command
The im port command allow s you to export functions from DLL. The keyw ord import is follow ed by DLL filename, w hich contains
imported functions, and afterw ards w e open the description block. Each line of the block contains a description of the imported
function, i.e. a type of the return value, if any, and a function name are aligned w ith parameters separated by commas and
enclosed in parentheses. You can substitute a new function name for the name of the imported file. To rename the function, you
need to use -> after the description and a new name. When function is imported, calling DLL function is made in the same w ay as
calling function w ritten in Gentee.

import "kernel32.dll"

{

 uint CloseHandle(uint)

 uint CopyFileA(uint, uint, uint) -> CopyFile

 uint CreateFileA(uint, uint, uint, uint, uint, uint, uint) -> CreateFile

 uint CreateProcessA(uint, uint, uint, uint, uint, uint, uint, uint,

 STARTUPINFO, PROCESS_INFORMATION) -> CreateProcess

}

If you are going to run the Gentee program from your ow n EXE file, you can use functions from the EXE module. To do it, specify
the name of the DLL file as an empty string and read about passing the addresses of the functions to be imported in the
Configuring and running Gentee section.

Attributes
cdeclare
Means that the __cdecl functions are imported. By default, the imported functions are considered to be the __stdcall functions.
import "myfile.dll" <cdecl>

{

 ...

}

link
In this case, a required .dll file w ill be included in a .ge file; w hile launching a program the .dll file is w ritten to the temporal directory
w here the program load it. The .dll file w ill be deleted after the program has ended. In other w ords, if you don't w ant some extra .dll
files to be distributed, but you doubt if the files have been stored before in a user's computer, this attribute w ill be helpful for you. It
is desirable that the complete path to the .dll file should be specified.
import $"c:\mypath\myfile.dll" <link>

{

 ...

}

exe
This attribute should be used if you get to know the relative path from your program to the .dll file. This is an example illustrated
my.dll loading from the subdirectory Plugins.
import $"plugins\my.dll" <exe>

{

 ...

}

Page 21

The public and private commands
All functions, metods, types or other elements of the Gentee language become publicly available by default after they have been
defined. Take advantage of the private command in order to make elements be accessible only w ithin the file, w here they have
been defined. All language elements that follow this command, w ill be accessible before the current .g file has compiled. After that,
names of these elements w ill be deleted, you w ill be unable to find the elements by specifying their names. The public command
makes the next elements be publicly available. You can use either public or private in the source as necessary. These
commands are likely to be used for functions, methods, operators, types and global variables.

private

func str mylocal

{

 ...

}

public

func str myfunc

{

 ...

 mylocal()

}

Page 22

Types and variables
Gentee is a strongly-typed language that is w hy types occupy a very important place in programming in Gentee. All types can be
divided into three groups: num eric types, structural types and the reserved type.

Numeric types
All numeric types are built into the language. uint is the most w idespread numeric type. The Gentee language has neither pointers
nor logic type, the uint performs their functions. The byte, ubyte, short, ushort types are considered as int or uint types
(depending on the sign) w hen arithmetic operations are performed. If you specify them as fields in structural types, they w ill
occupy the corresponding number of bytes.

Type nam e Size of type Minim um Maxim um Com m ents
Integer types
byte 1(4) -128 +127 signed
ubyte 1(4) 0 +255 unsigned
short 2(4) -32768 +32767 signed
ushort 2(4) 0 +65535 unsigned
int 4 -2147483648 +2147483647 signed
uint 4 0 +4294967295 unsigned
long 8 -2^63 +2^63 - 1 signed
ulong 8 0 +2^64 - 1 unsigned
Floating types
float 4 (+ or -)10E-37 (+ or -)10E38 ;
double 8 (+ or -)10E-307 (+ or -)10E308
Structure types
Structure types are defined by the type command. Types string (str), binary data (buf), collection (collection) are embedded
into the language. A lot of types are defined in the standard and other libraries (arrays, hashes etc).

Type reserved
The reserved type is of special significance, w hich belongs neither to the fundamental types nor to the structure ones. This type
is denoted by the array of bytes, w hich is defined and used as the array. The distinctive feature of the reserved type is that, the
memory space is reserved w here it has been defined. For example, you can specify a field in a structure reserved field[50]. This
means that a memory space of 50 bytes w ill be reserved in the structure. If you specify the same code inside a function then you
reserve 50 bytes in the stack for this local variable. The size of memory reservation allow s up to 65 535 bytes. Bear in mind that
you should not use an expression in order to specify the required size. It is a constant number that must be enclosed in square
brackets.

Page 23

The type command
Structure types are defined by using the type command. This command is follow ed by the specified type name and fields
description in braces.There can be one or more fields of the same type defined in each string of the block. First, a type name is
specified, w hich is follow ed by field names separated by commas or spaces. The field can have a numeric type as w ell as the
previously defined structure type. Fields of the structure type are organized in memory as they have been described in the source
code; if the field has a structure type, the structure of this type is completely embedded in the final structure. When fields are
defined, dimensions separated by commas and enclosed in square brackets and the item type follow ed the keyw ord of can be
determined. To get or assign a field value for a variable, its name should be specified after a full stop.

type customer

{

 str name, last_name

 uint age

 arrstr phones[5]

}

...

customer cust1 //

cust1.name = "Tom"

cust1.age = 30

cust1.phones[0] = "3332244"

Attributes
index
Types can contain other elements, like a string array. You can specify w hat type of elements can be included in the object of this
type by default. To do this, assign a corresponding type to this attribute. If elements have the same type by default (for example,
tree), w rite index = this .
type arrstr <index=str inherit = arr>

{

 ...

}

inherit
You can inherit types. You have to use the attribute inherit = èìÿòèïà. See more details in Type inheritance .

protected
Gentee makes it possible to restrict access to fields of the type from other modules. The specified protected attribute is used for
this purpose. In this case, all fields of the type w ill be accessible before the current file has compiled. Otherw ise, fields of this type
w ill be unaccessible.

type mytype <protected>

{

 ...

}

Additional features
For any structure type you can define methods that w ill allow you to

 Perform additional actions during initialization and deletion of a variable
 Specify of w hen describing variables of this type
 Use square brackets w hen addressing individual elements
 Use foreach to scan elements of this type.

These methods are described in System type m ethods .

Related links
 Type inheritance
 System type methods

Page 24

Type inheritance
Gentee allow s you to inherit structure types. For this purpose you have to specify an attribute inherit w ith the name of the
parent type.

type mytype <inherit = str>

{

 uint i

 uint k

}

Specify an empty curly brackets or a collon if a new type does not have additional fields.

type mynewtype <inherit = mytype> :

You cannot inherit base numeric types and the type reserved. The type inheritance allow s you to get fields of any parent type.

type my <inherit = mytype>

{

 str name

}

...

my m

m.i++

Also, you can call methods or functions of all parent types. The compiler finds a suitable method or function w hen you call some
function or method. For example, there are the follow ing functions

func print(mytype mt, uint i)

{

 print("MYTYPE PARAMETER = \(mt.i + i)\n")

}

func print(mytype mt)

{

 print("MYTYPE = \(mt.i)\n")

}

func print(my m)

{

 print("MY = \(m.i)\n")

}

You have

my mm

print(mm, 20)

print(mm)

The first print outputs MYTYPE PARAMETER = 20 and the second print outputs MY = 0, but nor MYTYPE = 0. The situation w ith
methods or operators is like. If you need to call just a parent method or a function then use the typecasting operator '->' w ith the
parent typename. print(m m ->m ytype) displays MYTYPE = 0.

So, Gentee gives you the such main object-oriented programming features as the inheritance and the polym orphism .

Related links
 The type command

Page 25

System type methods
For each type you can define methods that w ill simplify the w ork w ith variables of this type and increase its possibilities. Let s take
some abstract type.

type test<index = uint >

{

 uint mem

 str name

 uint itype

 ubyte dim0

 ubyte dim1

 uint count

}

Initialization
In Gentee the initialization of variables and fields of any type is automatic. If you w ant to perform additional actions during
initialization of a type variable, define the method init. We should note that all number fields are initialized as zeroes, and fields of
other types are also initialized according to descriptions of those types. For example, if the field has a str type, it w ill be initialized
w ith an empty string at once.

method test test.init

{

 this.mem = malloc(4096)

 this.name = "TEST"

 itype = uint

 return this

}

Deletion
If before deleting a variable of this type you w ant to perform additional actions, specify them in the method delete .

method test.delete : mfree(this.mem)

Using the of operator
Let s assume that a variable of this type can contain variables of another type. In this case you should have an opportunity to
indicate it w hen you describe the variable. For example, test m ytest of double . You should define the oftype method for the
compiler to understand the of operator. It should have a parameter giving the element type.

method test.oftype(uint itype)

{

 this.itype = itype

}

Specifying size and dimension
Let s assume that w hen you describe a variable you w ant to create several elements at the same time and also specify the
dimension of this variable. For example, test m ytest[10,20] of double . To do this, you should describe one array method for
each possible dimension.

method test.array(uint first)

{

 this.count = first

 this.dim0 = first

}

method test.array(uint first second)

{

 this.array(first * count)

 this.dim0 = first

 this.dim1 = second

}

Addressing by an index
If you w ant to get the i-th element of the variable of this type using brackets, you should describe one index method for each
dimension. You can specify not only numbers, but any other types as indexes. To do this, you only need to define a index method
w ith a parameter of a corresponding type. Note that the index method must return the pointer to the element it finds!

method uint test.index(uint first)

{

 return this.mem + first * sizeof(this.itype)

Page 26

}

method uint test.index(uint first second)

{

 return this.index(this.dim0 * first + second)

}

method uint test.index(str num)

{

 return this.index(uint(num))

}

...

test mytest[10]

mytest["0"] = 10

mytest[1] = 20

print("0 = \(mytest[0]) 1 = \(mytest["1"])")

Using the foreach operator
The Gentee language has a foreach operator that scans all elements of a variable of specified type. If you w ant to use this
operator for your type, you should define the eof, first, next methods w ith a fordata parameter. The icur field of fordata stores
the index of the current element during scanning. You should zero it in the first method and increase in the next method.

method uint test.eof(fordata fd)

{

 return ?(fd.icur < this.count, 0, 1)

}

method uint test.first(fordata fd)

{

 return this.index(fd.icur = 0)

}

method uint test.next(fordata fd)

{

 return this.index(++fd.icur)

}

...

test mytest[10]

uint sum

foreach curtest, mytest

{

 sum += curtest

}

Redefining operators
You can use all kinds of operations like =, +, *, ==, !=, * etc. for variables of any type. To do this, you need to describe
corresponding commands of operator. You can find more details at the Redefining operator operations page.

operator test =(test left, collection right)

{

 uint i

 fornum i=0, *right

 {

 if right.gettype(i) == uint

 {

 left[i] = right[i]->uint

 }

 }

 return left

Page 27

}

...

test mytest[10] = %{ 0, 1, 2, 3, 4, 5, 99, 8 }

Related links
 The type command
 Redefining operator operations
 foreach statement
 Method declaration: method

Page 28

The global command
Global variables are declared by using the global command. All necessary variables defined w ithin the curly brackets follow the
global command. You can put variables of the same type together in a single line; first, you specify a type name, w hich is follow ed
by variable names separated by either a comma or a space. For example,

global

{

 uint g_cur summary mode

 str name = "John", g_result, company

}

If the variable type supports the use of of and brackets, you can specify those additional parameters w hen you describe a global
variable. Besides, number variables, along w ith strings str and binary data buf can be initialized at the moment w hen they are
described w ith the help of the assignment operation '='. When you initialize variables, you can use macroexpressions. By default,
the variable is initialized w ith zeroes or by calling the corresponding initialization function.

You can address any global variable from the moment it s declared in further functions and methods.

global

{

 str a b = "My string", c

 uint num = 25 * $DIF, num2

 double dx = $DX + 0.1

 arr x[10] of int

 arrstr months = %{"January", "February", "March", "April", "May",

 "June", "July", "August", "September", "October",

 "November", "December" }

}

Related links
 Macro expressions
 System type methods

Page 29

Local variables
Local variables serve for temporary storage of intermediate results w hen a function or a method is executed. A local variable can
be declared in any part of the function body including nested blocks taken in braces. Each variable must be given its ow n type
declaration in a new line, that contains a specified type name and variable names separated by commas.

If the variable type supports the use of of and brackets, you can specify those additional parameters w hen you describe a local
variable. Besides, number variables, along w ith strings str and binary data buf can be initialized at the moment w hen they are
described w ith the help of the assignment operation '='. When you initialize variables, you can use macroexpressions. By default,
the variable is initialized w ith zeroes or by calling the corresponding initialization function.

func myfunc(uint param, str name)

{

 str a b = "My string" + name, c

 uint i = 25 * param + 3

 uint k = 10, l = 2

 arr x[k, l] of uint

 arrstr months = %{"January", "February", "March", "April", "May",

 "June", "July", "August", "September", "October",

 "November", "December" }

 ...

}

Scope of local variables
The scope of a local variable extends from its declaration to the end of the block in w hich it w as declared, including nested blocks.
Global and local variables are likely to be redefined; in other w ords, w ithin a block a new ly declared variable shares the same
name as the variable previously declared. It is possible that the new variable may be of another type. The last-mentioned variable
w ill be available till the end of the current block, and the previously declared variable becomes hidden. Once the block ends, the
variable that w as subsequently hidden is again available. Actually, the objects declared as local ones are automatically created
w hen the block begins execution, and destroyed w hen the block ends. You can create objects w ith the help of the new service
function. In this case, a programmer should keep an eye on deleting objects, using the destroy function. As local variables are
deleted w hen w e exit the function, you can only return numeric local variables.

func myfunc

{

 uint a = 10

 ... // a == 10

 {

 ... // a == 10

 uint a = 3

 ... // a == 3

 while ...

 {

 ... // a == 3

 }

 ... // a == 3

 }

 ... // a == 10

}

Related links
 Returning variables
 System type methods

Page 30

Function declaration: func
A function consists of tw o parts: a declaration and a function body. When you declare a function, you specify the keyw ord func,
the type of its return value, its name, its attributes enclosed in angle brackets and its parameters enclosed in parentheses. Only the
function name is required. When you do not specify the type of its return value, the function does not return any values.

A body of a function or a method is everything included in braces that follow the function description. The function body can
contain subfunctions, expressions, constructions and descriptions of local variables.

func uint sum(uint left right)

{

 return left + right

}

Attributes
entry
This attribute is specified for functions that must be started automatically before the main function is called.
main
This attribute is specified for the main function w ith w hich the program is started. If there are several functions w ith this attribute,
the last function w ith m ain attribute w ill be called. The main function is run after all entry functions are called. Functions that
have m ain or entry attribute should not have parameters.
func uint myprog<main>

{

 print("Hello, World!")

 getch()

}

result
Gentee does not allow returning a structural type from a function if it belongs to (is described inside) this function. This attribute
makes it possible to evade this restriction. You can find more details about using it at the Returning variables page.
alias
If you need to get and transmit a function, method or operator identifier somew here, you can use this attribute. As functions and
methods can have the same names, but different parameters, finding the necessary function can lead to some difficulties. You can
assign an alias name to the attribute and use this name as a variable function identifier.
func uint myfunc_verylongname<alias = myfunc>(uint param)

{

 return param * 10

}

func str mystring<result>

{

 result = "Result string"

}

func main<main>

{

 print("Val= \(myfunc->func(10))")

 print(mystring())

 getch()

}

Parameters
Each parameter declaration is a comma-delimited series of parameter names w ith the type identifiers specified after a type name,
then follow ed by a comma or space and a new type name and parameters. If a function takes no parameters, omit the identifier list
and the parentheses in its declaration. You can define functions w ith the same name but w ith different parameters. In this case,
w hen you call a function the compiler looks for a function w ith the same name and parameters.

When you describe parameters, you can use brackets to specify the dimension and the of operator. When you describe such
parameters, you do not have to specify a precise number of elements in brackets.

func uint myfunc(uint a b c, byte d, str st1 st2, arr marr[,] of uint)

{

 ...

}

Addressing the parameters is the same as addressing local variables. All num eric types are given to a function or a method by
value . That means you can change the value of the parameter w ithout any consequences. All structure types are given by
reference . In this case all the changes you have made w ill happen to the original variable that you passed as a parameter.

Page 31

func str myadd(str left)

{

 left += " OK!"

 return left

}

func main<main>

{

 str val

 myadd(val = "Process")

 print(val)

}

Related links
 Returning variables
 Local variables
 Subfunction declaration: subfunc

Page 32

Method declaration: method
You can define different m ethods for any types. Any method is a function associated w ith an object of the appropriate type, that
the method should operate on. A method is defined by specifying the keyw ord m ethod follow ed by the name of the return type (if
it is required), an object type and a method name follow ed by a separating period. Like declaring a function, you should specify
method parameters follow ed by its body: object.m ethodnam e(param eters).

The parameter this is created automatically w ithin the method; furthermore, this parameter contains the object to w hich the given
method is called. The parameter this has the same type as the object does.

method uint str.islast(uint ch)

{

 return this[*this - 1] == ch

}

func main<main>

{

 str mystr

 ...

 if mystr.islast('\')

 {

 ...

 }

}

You can specify result and alias attributes for m ethod like for functions. Methods are responsible for object initialization and
destruction, getting index and type conversion as w ell as for other operations. See more details on the System type methods
page.

Type conversion
Type conversion is also declared w ith the help of the methods. A source type is specified as the object type of the method and a
destination type of the object is specified as the method name. If the destination type is structured you must use result attribute.

// uint -> str

method str uint.str < result >

{

 result.out4("%u", this)

}

// str -> uint

method uint str.uint

{

 uint end

 return strtoul(this.ptr(), &end, 0)

}

func main<main>

{

 str mystr

 uint a = uint("100")

 mystr = str(a)

}

Related links
 Function declaration: func
 System type methods

Page 33

Redefining operator operations
Gentee enables objects to do new operations using the existing operators (=, ==, +=, +, *, <, == etc.). Moreover, the statement
priority keeps permanent. The operation processing is executed w ith the help of special function-operators w hich include the
keyw ord operator. Then you should specify the result type, the operator represented by characters and one or tw o parameters
w hich are subject to the operation (either unary or binary). The parameters type coincides w ith the operands type, thus the
parameters w ill contain the operand values. If the operation is considered to be binary, the first parameter represents the left
operand and the second parameter represents the right one. Operands can have different types. If the result of the operation is a
new object (for example, adding) then you must use result attribute. Also, you can define alias attribute if you need that.

If you w ant to describe comparison operators for your type then you can take only ==, < and > operators . Operators !=, >=, <=
may not be described and are compiled to ==, < and > automatically.

operator str +<result>(str left right)

{

 (result = left) += right

}

operator str +=(str left, int val)

{

 return left.out4("%i", val)

}

func main<main>

{

 str dest = "Zero", a="One", b="Two"

 print((dest = a + b)+= 323)

}

Related links
 Function declaration: func

Page 34

Declaring text function
The text command is used specifically to w ork w ith text data. It allow s you to generate text of any complexity and size.

When you declare a text-function, you specify the keyw ord text, the attributes enclosed in angle brackets and the parameters
enclosed in parantheses. The attributes as w ell as the parameters are optional. A text-function does not return the value. The
attributes as w ell as the parameters are declared in the same w ay as functions. The body of the text function (the output text)
starts in a new line after declaring the text function and goes either to the end of the file or to the follow ing service characters: \!.

As for the simple function, strings enclosed in double quotes are inserted into the source code; as for the text function, on the
contrary, the source code is inserted into the text.A text function outputs a text to a console or to a string. It is subject to the text
function call.

Console output
Output to the console is carried out w ith the help of the @ unary operation.
@nam etextfunc(param eters)
String output
Output to a string is carried out w ith the help of the @ binary operation w here the output string is specified on the left. The result
of the text function w ill be added to the string.
stem p @ nam etextfunc(param eters)
Additional features
The service character and the commands operated in a string are used in a text function. Furthermore, a text function uses the
follow ing additional commands.

\! The end of a text function. By default, a text function goes to the end of the file.

\@nam e(...) Calling another text function. The output mode (to a console or to a string) is not changed.

\{...} Insertion of the code block. You can specify the source code enclosed in braces as in the function body. This block fits the
block of the low est level of the function and you can declare subfunctions there. Use operation @"string" in the code block to
output a string to the current output stream.

text hello(uint count)

Must be \(count) strings

\{

 uint i

 fornum i, count : @"\(i + 1) Hello, World!\n"

}Welcome to Gentee!\!

func b <main>

{

 @hello(3) // Write to console

 @"Press any key...\n"

 getch()

 str out

 out @ hello(5)

 print(out)

 getch()

}

Current output
You can use the current output string by the using this . If this equals zero then the console is the current output of the text
function.

Related links
 Function declaration: func
 Strings

Page 35

Properties
Gentee provides you w ith the property in order to get or set values of the fields of the structured types. Using the properties
you can hide a direct access to the fields and perform additional calculations in order to get a field value or set a field value w ith
the help of the assignment operator. A property name must differ from a field name, because a direct access to a field has a
higher priority; otherw ise, a field value w ill be got or set.

The get property, that returns a value, must contain no arguments.

type mytype

{

 str val

}

property str mytype.value

{

 return this.val

}

The set property, that defines a value, must contain one argument. Also, the set property can return a value.

property str mytype.value(str newval)

{

 if *newval : this.val = newval

 else : this.val = "empty"

 return this.val

}

A property name is specified in the same w ay as a field in order to call a property. The set property is called if it is specified on the
left side of the assignment operator; otherw ise, the get property is called.

func myfunc

{

 mytype myt

 myt.value = "New value" // set

 print(myt.value) // get

}

Related links
 Function declaration: func

Page 36

The extern command
You cannot call any function before its definition. The extern command provides you w ith preliminary declaration of a function, a
method, a property or an operator. The command allow s you to call a function before it has been defined. For example, a recursive
function call from another function.

The keyw ord extern is follow ed by the block that contains function declaration. Each line of the block contains either function,
method, operator or property declaration, excluding their bodies.

extern

{

 func uint b(uint i)

 func uint c(str in)

}

func uint a(uint i)

{

 return b(2 * i) + c("OK OK")

}

func uint b(uint i)

{

 return i + 20

}

func uint c(str in)

{

 uint ret i

 fornum i,*in

 {

 if in[i] == 'K' : ret++

 }

 return ret

}

Related links
 Function declaration: func

Page 37

Subfunction declaration: subfunc
Subfunctions are defined in the body of the function w ith the help of the subfunc construction. A subfunction is defined in the
low est level of the embedded block of the body. You can call a subfunction only from the function body as w ell as from other
subfunctions of the given function. It is impossible to define another subfunction and to call itself recursively, because local
variables are considered to be static. A subfunction is able to redefine other functions' names. A subfunction is actually called like
a function; moreover, a subfunction as w ell as its parameters are declared in much the same w ay as the function, except for the
lack of attributes. You can use local variables of the function w ithin the subfunction.

Subfunctions are very usefull w hen you need to execute the same code some times inside the function but you do not w ant to
describe an independent function.

func uint myfunc(int par)

{

 int locvar

 subfunc int mysubfunc(int subpar)

 {

 return locvar + par + subpar

 }

 locvar = mysubfunc(5)

 par = mysubfunc(10) + mysubfunc(20)

}

Related links
 Function declaration: func

Page 38

Returning variables
Gentee prevents returning local variables from functions and methods if the variables are not of the num eric data type. All
structural local variables are deleted as soon as the function has finished executing. For example, if the next function is called, the
error occurs.

func str func1

{

 return "Result string"

}

In such cases, the result attribute can be used. The attribute enables you to return a result value from functions or methods.
Furthermore, using the attribute avoids defining and sending unnecessary local variables. Take advantage of this attribute in order
to use the result variable, that w ill be returned as soon as the function has finished executing. If a function has the result
attribute, the return instruction is not required or it must contain no expression.

func str myfunc<result>

{

 result = "Result string"

}

func main<main>

{

 print(myfunc())

}

Note that a function or a method of this type is called after a temprorary variable has been actually created in the calling block. The
variable is sent to the function w here it is used as the result variable.

Related links
 Function declaration: func

Page 39

Statements
A function (method, operator, property) body contains some statements that are used to interrupt the sequential execution of a
program. Some of them contain blocks w hich also have nested statements.

There are several types of statements, as follow s:

Conditional statements

if-elif-else Conditional statement.

sw itch Case statement.
Loop statements

w hile-do Simple loop statement.

do-w hile Simple loop statement, evaluated at the bottom.

for Loop statement that provides initialization and increment clauses.

fornum Loop statement that executes a finite number of iterations and has autoincrement.

foreach Loop used for enumerating elements.
Instructions of unconditional transfer of control

return Function termination.

break Loop termination.

continue Immediate transfer of control to the next loop iteration.

label Label definition.

goto Unconditional transfer of control to a label.
Other statements

w ith Short fields management.

Page 40

if-elif-else statement
The statement consists of the follow ing parts:

if
The if part contains the if keyw ord, a conditional expression and the block executed if condition is TRUE. If the condition is FALSE,
control passes to the next part elif.

elif
The elif part contains the elif keyw ord, a conditional expression and the block executed if condition is TRUE. The statement is
likely to contain some elif parts follow ed one after another.

else
The else part contains the else keyw ord and the block executed if the condition of the if part as w ell as the condition of all elif
parts are FALSE.

The elif and the else operators are optional.

The value of a conditional expression must be numeric. The value is TRUE if it is nonzero.

//if

if a == 1

{

 b = 10

}

//if and else

if a == 10 && b > 20 : b = 10

else

{ b = 0 }

//if elif else

if a == b+10

{

 ...

 b = 10

}

elif a > 2 { b = 100 }

elif a != 1 || b == 32 : b=1000

else : b = 0

Related links
 Statements

Page 41

switch statement
The sw itch construction allow s you to perform different operations in case an expression has different values. The sw itch
keyw ord is follow ed by the initial expression that is calculated and stored as the sw itch value. Then you enumerate case
constructions in curly braces w ith all possible values and the source code that should be executed. One case can have several
possible values separated w ith a comma in case of w hich it w ill be executed. After executing the case block w ith the matching
value , the program goes to the statement coming after sw itch. The rest of case blocks are not checked.

switch a + b

{

 case 0, 1, 2

 { ... }

 case 3

 { ... }

 case 4,10,12

 { ... }

}

If you w ant to execute some operations in case none of the case blocks is executed, insert the default construction at the end
of sw itch. The default statement can appear only once and should come after all case statements.

switch ipar

{

 case 2,4,8,16,32

 { ... }

 case k, k + l

 { ... }

 default

 {

 ...

 }

}

Additional features
The sw itch construction can be used not only for numeric expressions, but also for any types supporting the comparison
operation ==.

The same as case , it is possible to use the label label for an unconditional jump inside sw itch. Labels that appear after the case
keyw ord enable you to enter the appropriate case case-block from another case-block.

switch name

{

 case "John", "Steve"

 label a0

 {

 ...

 }

 case "Laura", "Vanessa"

 {

 ...

 if name == "Laura" : goto a0

 }

 default

 {

 ...

 }

}

Related links
 Statements
 label and goto instructions

Page 42

while and do statements
while
The w hile statement is a simple loop. The w hile statement has the follow ing parts: a w hile keyw ord, a conditional expression and
a loop body (block). The execution of the loop body is repeated until the value of the expression evaluates to FALSE. The loop is
never executed, if the value is zero w hen the test is performed for the first time.

a = 0

while a < 5

{

 ñ += a

 a++

}

do-while
The do-w hile statement contains the do keyw ord, a loop body, the w hile keyw ord and a conditional expression. The execution
of the loop body is also repeated until the value of the expression evaluates to FALSE. Unlike the w hile statement, the test is
performed after the execution of the loop body is completed and the iteration occurs at least once.

a = 4

do

{

 ...

 a--

} while a

There are special operators for the loop terminating w hen it is required. See more details on the return, break, continue instructions
page.

Related links
 Statements
 return, break, continue instructions

Page 43

for and fornum statements
for
The for statement consists of the for keyw ord, a sequence of three expressions separated by commas, a loop body.

for exp1, exp2, exp3

{

 ...

}

exp1 is an optional initialization expression. It is usually used for assigning the initial value to the counter variable.
exp2 is a conditional expression. The loop executes as long as the condition is TRUE.
exp3 is an optional increment expression. Actually, this expression increments or decrements the value of the counter.

The statement defined above can be performed w ith the help of the w hile loop as follow s:

exp1

while exp2

{

 ...

 exp3

}

The follow ing loops does the same actions.

for i=0, i<100, i++

{

 a += i

}

i = 0

for , i<100,

{

 a += i++

}

fornum
If the loop counter i is incremented by one and the highest value of the counter is defined before the loop iteration starts, the
fornum statement is used in place of the for statement.

The fornum keyw ord is follow ed by a counter variable name, then the assignment operator and the expression (the initial value of
the counter) can be used. If there are not any assignment operators, the initial value of the counter remains unchanged. Any
integer should be treated as a counter variable. A comma delimited expression is specified,its result defines the loop termination.
This expression is evaluated once before the loop iteration starts. The loop executes as long as the value of the counter is less
than the value of the expression. Then the loop body follow s. By default, the increment operation (value of the counter is
incremented by one) is appended to the loop body by the compiler.

fornum i=0,100

{

 a += i

}

Related links
 Statements
 return, break, continue instructions

Page 44

foreach statement
The foreach loop is used to w ork w ith objects containing some number of elements. The type of an object must have the first,
next, eof methods. See more details on the System type methods page. With the foreach construction, it is possible to go through
all elements in the initial object.

You specify the name of the variable that w ill point to each next element after the foreach keyw ord. After that the object including
the loop and then the body of the loop come separated w ith a comma. If the object contains elements of the numeric type, the index
variable w ill contain values. If the object consists of items of the structural type, the index variable w ill point to each next element.
If you change the index variable in this case, the corresponding element in the object w ill be changes as w ell.

arrstr names = %{"John","Steve","Laura", "Vanessa"}

foreach curname,names

{

 print("\(curname)\n")

}

Related links
 Statements
 System type methods

Page 45

return, break, continue instructions
return
The return instruction is used either to return a function value or to terminate the execution of a function. The exit may be from
anyw here w ithin the function body, including loops or nested blocks. If the function returns a value, the return instruction is
required, furthermore it contains the expression of the appropriate type.

func uint myfunc

{

 ...

 fornum i, 100

 {

 if error : return 0

 ...

 }

 return a + b

}

break
The break instruction terminates the execution of the loop. break is likely to be located w ithin nested blocks. If a program contains
several nested loops, break w ill exit the current loop.

while b > c

{

 for i = 100, i > 0, i--

 {

 if !myfunc(i)

 {

 break //exit from for

 }

 }

 b++

}

continue
The continue instruction may occur w ithin loops and attempts to transfer control to the loop expression, w hich is used to
increment or decrement the counter (for the follow ing loops: for, fornum, foreach) or to the conditional expression (for w hile and
do-w hile loops); moreover, the execution of the loop body is not completely executed. The instruction executes only the most
tightly enclosing loop, if this loop is nested.

fornum i, 100

{

 if i > 10 && i < 20

 {

 continue

 }

 a += i // The given expression is not evaluated if i>10 and i<20

}

Related links
 w hile and do statements
 for and fornum statements
 foreach statement

Page 46

label and goto instructions
The label and goto insrustions perform an unconditional transfer of control w ithin the function body.

label
The appearance of the label instruction in the source program declares a label. The keyw ord label is follow ed by a name - an
identifier label. Labels define w here to jump for the goto command. The label has scope limited to the block in w hich it is declared,
therefore the goto instruction transfers control to the label either inside the current block or in blocks of higher levels. Control
transferred to the label may occur before the label is declared.

goto
You can use the goto command to jump to the specified label. You should specify the name of the label to continue executing the
program from after each goto keyw ord.

func myfunc

{

 ...

 {

 goto mylabel

 ...

 label mylabel

 ...

 goto finish

 }

 ...

 label finish

}

Page 47

with statement
The w ith construction allow s you to simplify addressing the fields of a variable of the structural type. Let us take the follow ing
example.

customer mycust

mycust.id = i++

mycust.name = "John"

mycust.country = "US"

mycust.phone = "999 999 999"

mycust.email = "john@domain.com"

mycust.check = mycust.id + 100

As you can see, you have to specify the name of the variable each time. w ith allow s you to drop the variable name inside its
block. To do it, specify the variable name after the w ith keyw ord and you w ill be able to specify only the point and the name of the
corresponding field in curly braces. You can embed w ith constructions inside each other.

customer mycust

with mycust

{

 .id = i++

 .name = "John"

 .country = "US"

 .phone = "999 999 999"

 .email = "john@domain.com"

 .check = .id + 100

}

Page 48

Arithmetic operators
There are three groups of arithmetic operators.

Arithmetic operators

+ Addition. 10 + 34 = 44

- Subtraction. 100 - 25 = 75

* Multiplication. 11 * 5 = 55

/ Division. Dividing one integer into another, any fractional portion is truncated. 10 / 3 = 3

% Residue of division. The operation a % b returns the remainder (modulus) obtained by dividing a into b or 0, if result is a w hole
number. The modulus operator % is only used to perform division of tw o integers. 14 % 4 = 2

-(un
)

Unary negation operator. This operation change a sign of integer or decimal numbers. -10 = -10

a = (54 + b) * ((2*c - 235) / 3)

b = a % 10 + 0xFF00

Increment and decrement operators
The operators ++ and -- are unary operators and deal w ith only integers.

++ The increment operator. This operator is expressed in tw o notations: the prefix-form ++i and the postfix form i++. In the prefix
form, variable i is incremented by the integer value 1, new value of variable i is used in the expression evaluation; in the postfix
form, the increment takes place after the value of variable i is used in the expression evaluation.

-- The decrement operator. The prefix notation is --i - the variable is decremented by one and the result is this decremented
value. The postfix notation is i-- - the decrement occurs after the value of variable is used in expression evaluation.

i = ++k

while i++ < 100

{

 sum += l--

}

Bitwise operators
These bitw ise operators perform manipulation on integer operands.

& Bitw ise-AND (binary). 0x124 & 0x107 = 0x104

)

^ Bitw ise-exclusive-OR (binary). 0x124 ^ 0x107 = 0x23

<< Bitw ise shift left (binary). The bitw ise shift operators shift their left operand left or right by the number of positions the right
operand specifies, bits vacated by the shift operation are zero-filled. 0x124 << 2 = 0x490

>> Bitw ise shift right (binary). 0x124 >> 2 = 0x92

~ Bitw ise negation (unary). ~0x124 = 0xFFFFFEDB
a = b & 0x0020 + ñ | $FLAG_CHECK

rand=(16807 * rand) % 0x7FFFFFFF) % (end - begin + 1) + begin

You can define these operators for any types. See more details on the Redefining operator operations page.

Related links
 Redefining operator operations

Page 49

Logical operators
Logical operators
These logical operators perform manipulation on integer operands. The result of a logical operation is the integer of uint type, w hich
has either 0 value -the result is FALSE or 1 value - the result is TRUE.

&& Logical-AND (binary). Returns 0 if at least one operand equals 0.

|| Logical-OR (binary). Returns 1 if at least one operand does not equal 1.

! Logical negation (unary). Returns 0 if the operans is not 0, and returns 1 if the operand equals 0.
if a < 10 && (b >= 10 || !c) && k

{

 if a || !b

 { ... }

}

Comparison operators
The result of this operation is the integer of uint type, w hich has either 0 value -the result is FALSE or 1 value - the result is TRUE.

== Equality.

!= Inequality.

> Greater-than.

< Less-than.

>= Greater-than-or-equal-to.

<= Less-than-or-equal-to.

%<, %>, %<=, %>=,
%==, %!=

The operators are used to compare tw o operands alternatively. For example, using these operators you can
compare strings by a case-insensitive value (no uppercase preference).

while i <= 100 && name %== "john"

{

 if name == "stop" : return i < 50

 ...

}

You can define these operators for any types. See more details on the Redefining operator operations page.

Page 50

Assignment operators
The assignment operators are considered to be the binary operators. The left-hand operand of an assignment operation must be a
variable, item of array, field of structure etc. These operators have right-to-left associativity.

= Simple assignment.

+= Addition assignment. a += b => a = a + b

-= Subtraction assignment. a -= b => a = a - b

*= Multiplication assignment. a *= b => a = a * b

/= Division assignment. a /= b => a = a / b

%= Remainder assignment. a %= b => a = a % b

&= Bitw ise-AND assignment. a &= b => a = a & b

=)

^= Bitw ise-exclusive-OR assignment. a ^=b => a = a ^ b

>>= Right-shift assignment. a >>= b => a = a >> b

<<= Left-shift assignment. a <<= b => a = a << b

As you have already noticed, except "simple assignment" you can perform the assignment w ith an operation, that is after a binary
operation of the right-hand operand and the left-hand operand is performed, the result is assigned into the left operand.

a = 10

a += 10 + 23 // a = 43

a *= 2 // a = 86

if a = 2 // TRUE !!!

{...}

if a == 2 // TRUE if a equals 2

{...}

One and the same expression can contain several assignment operations, each of w hich returns the assigned value. In this case,
the assignment operation is performed from right to left.

a = 10 + b = 20 + c = 3

// result: ñ=3, b=23, a=33

a = (b += 10)

You can define these operators for any types. See more details on the Redefining operator operations page.

Page 51

Type reduction
The as operator
The as operator executes tw o functions: to assign a value to a variable and to redefine a type. This operator is binary, that has
right-to-left associativity. The left-hand operand must be a local variable of uint type. Depending on the value of the right-hand
operand, it can be operated in tw o possible w ays:

The first way
The right-hand operand is a structure type name. A value of the local variable is not modified, but its type is redefined w ith the
required one; the variable is assumed to store an object's address, moreover this variable can be treated as the object, ignoring
the pointer operation ->.

str mystr

uint a

a = &mystr

a as str

a = "New value"

The second way
The right-hand operand is an expression that returns an object. An address of the object is assigned to the variable, w hich
redefines its type w ith the object's type. The object type must be different from numeric types.

str mystr

uint a

a as mystr

a = "New value"

The variable type w ill be redefined either until the end of the current block or until the next operation as w ith the variable occurs.

Operator ->
Often you need just to specify that a variable is of a certain structural type. In this case, you can use the -> statement w ith the
name of the required structural type. Together w ith the type name, you can specify the dimension in square brackets and the type
of items w ith the help of of. The variable -> is applied to can be of not only the uint type, but any structural type.

func myfunc(uint mode, uint obj)

{

 str ret

 uint val

 switch mode

 {

 case 0: myproc(obj->arrstr)

 case 1: print(obj->str)

 case 2: obj->mytest.mytest2str(ret)

 case 3

 {

 val = (obj->arr[,] of ubyte)[1,1]

 }

 }

}

Type ñonversion
By default, only integral types byte,ubyte, short, ushort, int, uint are automatically converted into each other, you should use
express conversion for other types. For an expression of the type to be converted to another type, it is necessary to specify a
type name, to w hich data w ill be converted, and the expression enclosed in parentheses; moreover, the conversion w ill occur if
the specified source type has the appropriate method. See more details about such methodson the Method declaration: method
page.

str a = "10"

uint b

b = uint(a)

Related links
 Method declaration: method
 Fields and pointers

Page 52

Fields and pointers
Addressing fields
The . statement (dot) is used to get or set the value of a field or to call a method or a property. You should specify the name of the
field or property after the dot. You should specify parameters in parentheses in case you call a method.

type customer

{

 str name, last_name

 uint age

 arrstr phones[5]

}

...

customer cust1

cust1.name = "Tom"

cust1.age = 30

cust1.phones[0] = "3332244"

cust1.process()

Addresses and pointers
The unary operator & gives the address of a local or global variable as w ell as the address (identifier) of a function. The operation
returns the value of uint type. How ever, if the result of any operation is an object, for example the function w hich returns a string,
the address-of operator is also apllied to the obtained object. The address-of operator &, applied to the object (structure), returns
the address of the required object and is used for a type cast to uint type.

uint a b

str mystr

...

a = &mystr

b = &getsomestr

b->func(a) // equals getsomestr(mystr)

You should use the -> statement to get a value by its address. The first operand must be the name of the numeric type and the left
operand must point to the value of the corresponding numeric type.

int a = 10, b

uint addra

addra = &a

b = addra->int // b = 10

addra->int = 3 // a = 3

Array element operation
Many structures or objects can include elements of other types. You can use square brackets [] to access the elements of an
object (array elements, string characters). If an object is a multidimensional one, its dimensions are separated w ith commas.
Elements are counted starting from zero. For you to be able to apply this operation to a variable, its type must have the
corresponding index methods. See more details on the System type methods page.

arr myarr[10, 10, 10] of byte

str mystr = "abcdef"

myarr[i, k+3, 4] = 'd'

myarr[0, 0, 0] = mystr[i]

Related links
 System type methods
 Type reduction

Page 53

Calling functions and methods
Calling function and method
A function call includes the name of the function being called and the arguments enclosed in parentheses and separated by
commas. If the function does not have any arguments, the empty parentheses follow the function name. If either a function or a
method returns a value, the function or method call may be used in the expression. The . operator is used to call a method, then the
arguments are listed in the same w ay as the arguments of a function: the variable, w hich stores a structure, is follow ed by the
point, then you specify the name of the method and the arguments enclosed in parentheses.

a = my.mymethod(myfunc(a, b + c))

a = b->mystruct.mymethod(d)

Function call via a pointer
A variable of uint type can store the address (identifier) of a function. In order to get the address of a function, the & operator is
used, w hich is follow ed by the name of the function w ithout parentheses. A function call includes the ->func and the arguments
listed inside parentheses. In this case, you ought to keep an eye on the number and types of the arguments, because the compiler
is not able to verify the arguments. The same w ay you can call methods and operators.

a = &myfunc

a->func(c, d)

Gentee allow s you to call functions by their address. For example, you can get the function address w hen you use Window s API
function GetProcAddress . Use the ->stdcall and the arguments listed inside parentheses. If the function has cdecl type then
use the keyw ord cdecl instead of stdcall.

a = GetProcAddress(mylib, "myfunc".ptr())

a->stdcall(1, b)

Text-function call
The @ operator is applied to call a text-function. This operation can be either unary or binary.

Unary operation
@ nam e(...)
If a text-function is called from the simple function or method, the text function w ill output data to a console. In case of calling the
function from another text-function, data w ill be outputted to the same place as the current text-function. A text function may be
called w ithout the unary @ operator. In other w ords, the text function is called in the same w ay as the simple function.

Binary operation
dest @ nam e(...)
If the @ operator is applied as a binary operator, the left-hand operand must be a string, to w hich data w ill be outputted from the
text function. In the example illustrated above, dest is a variable or an expression of the str type. Actually, data are appended to a
destination string.

The @ operator is used not only for the text-function call, but also for the string output. If the right-hand operand is either a variable
or an expression of the str type, this string w ill be outputted to the console or w ill be appended to a destination string as described
above.

str a

@mytext(10) // Console output

a @ mytext(20) // string output

@"My text" // print("My text")

Related links
 Fields and pointers
 Function declaration: func
 Method declaration: method
 Declaring text function

Page 54

The conditional operator ?
The conditional operator ? operates in the similar w ay as the if-else statement, but the conditional operator can be located in the
expression. The operator is a ternary operator (it takes three operands). The operands separated by commas are enclosed in
parentheses; the first logical (integer) expression is evaluated. If the value is nonzero (TRUE), the second expression w ill be
evaluated, the value of w hich w ill be a result of the conditional operation. Otherw ise, the third operand w ill be evaluated, the value
of w hich w ill be returned.

r = ?(a == 10, a, a + b)

if a >= ?(x, 0xFFF, ?(y < 5 && y > 2, y, 2*b)) + 2345

{

 ...

}

Page 55

Late binding operation
The ~ operation is used for late binding. This operation has a lot in common w ith the . operator (used to access a field value or
method call); how ever, at compile time it is sometimes difficult to define all methods and fields of an object, w hereas w hile
executing a program a particular method of an object is called for being assigned a field/method name, types and values of
parameters. The late binding operation is actually applied for COM objects .

An object identifier is the left-hand operand of the ~ operation, that is used for maintaining late binding; the right-hand operand is a
field/method name, that is used either for setting up a property (e.g. excapp~Visible) or for calling a method (e.g.
excapp~Cells(3,2)).

An object can maintain the follow ing kinds of late binding:

 elementary method call excapp~Quit, w ith/w ithout parameters;
 set value excapp~Cells(3, 2) = "Hello World!";
 get value vis = uint(excapp~Visible);
 call chain excapp~WorkBooks~Add, equals the follow ing expressions

tm pobj = excapp~WorkBooks
tm pobj~Add

A shortcoming of late binding is that the compiler cannot check if either fields/methods or types are specified properly; it causes
problems for troubleshooting.

Have a look at the example of using late binding, w here the COM library is applied.

include { "olecom.ge"}

...

oleobj excapp

excapp.createobj("Excel.Application", "")

excapp.flgs = $FOLEOBJ_INT

excapp~Visible = 1

excapp~WorkBooks~Add

excapp~Cells(3, 2) = "Hello World!"

Page 56

Table of operator precedence
As a rule, all statements are executed from left to right, but there is such a concept as statement priority. If the next statement has
a higher priority, the statement w ith a higher priority is executed first. For example, multiplication has a higher priority and 4 + 5 * 2
is 14, but if w e use parentheses, (4 + 5) * 2 is 18.

Character operation Associativity
The highest priority
() [] . ~ -> Left to right
! &(un) *(un) -(un) ~(un) ++ -- @(un) Right to left
% * / Left to right
+ - @ Left to right
<< >> Left to right
< > <= >= %< %> %<= %>= Left to right
!= == %== %!= Left to right
& Left to right
^ Left to right
| Left to right
&& Left to right
|| Left to right
?(,,) Left to right
= += -= *= /= %= &= |= ^= >>= <<= as Right to left
The low est priority

Parentheses () change the order in w hich expressions are evaluated. You can use square brackets in order to deal w ith the
elements of the array or the indexed elements, for example, a character in a string. The unary operators include !, &, *, -, ~, ++, --.
It is the prefix notation that is used for all unary operators, except increments. As for increment operations ++ and --, they can be
occured either in the prefix or in the postfix notation. The follow ing operators &, *, -, @, ~ are likely to be binary as w ell as unary
operators. All other operators are binary (taking tw o operands).

Page 57

Gentee Language in BNF
You can use ANSI character set from 0 to 255 in a source code. ANSI character set from 32 to 128 are specified in the diagram
defined above, other characters are represented in hexadecimal notation, for example 0x09 - a tab character. Some preprocessor
commands are not show n in these diagrams.

<binary digit> ::= '0' | '1'

<decim al digit> ::= <binary digit> | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

<hexadecim al digit> ::= <decimal digit> | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e ' | 'f'

<byte> ::= <hexadecimal digit><hexadecimal digit>

<decim al num ber> ::= <decimal digit> {<decimal digit>}

<hexadecim al num ber> ::= '0' ('x' | 'X') <hexadecimal number> {<hexadecimal number>}

<binary num ber> ::= '0' ('b' | 'B') <binary number> {<binary number>}

<character code> ::= '''<any character>'''

<floating point num ber> ::= <decimal number>'.'[<decimal number>]

<real num ber> ::= ['-'] (<floating point number> | <floating point number> ('e ' | 'E') ['+' | '-'] <decimal number>) ['d' | 'D']

<natural num ber> ::= <decimal number> | <hexadecimal number> | <binary number> | <character code>

<integer num ber> ::= ['-'] <natural number> ['l' | 'L']

<num ber> := <integer number> | <floating point number> | <real number>

<letter> ::= 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z' | 0x80 | 0x81 | ... | 0xFF

<space> ::= 0x20

<tabulation> ::= 0x09

<end-of-line> := 0x0D 0x0A

<delim iter> ::= '!' | '"' | '#' | '$' | '%' | '&' | ''' | '(' | ')' | '*' | '+' | ',' | '-' | '.' | '/' | '<' | '=' | '>' | '?' | '@' | '[' | '\' | ']' | '^' | '_' | '|' | '}' | '{' | '~' |
<tabulation> | <space> | <end-of-line>

<character> ::= <decimal digit> | <letter> | <delimiter>

<nam e> ::= (<letter> | '_') {<letter> | '_' | <decimal digit>}

<function nam e> ::= <name>

<variable nam e> ::= <name>

<type nam e> ::= <name>

<field nam e> ::= <name>

<m ethod nam e> ::= <name>

<attribute nam e> ::= <name>

<m acro nam e> ::= <name>

<str character> ::= <tabulation> | <space> | '!' | '#' | ... | '[' | ']' | ... | 0xFF

<ext str character> ::= <str character> | '\'

<any character> ::= <ext str character> | '"'

<m acrostring elem ent> ::= {<str character>|<end-of-line>| '$'<macro name>}

<const string elem ent> ::= <str character> | <end-of-line> | '\\' | '\"' | '\a' | '\b' | '\f' | '\n' | '\r' | '\t' | '\l' | '\0'<byte> | '\$'<macro
name>'$' | '\$"' {<macrostring element>} '"' | '\#' | '\=' ('\' | '/' | '~' | '^' | '&' | ':') | '\%['[{<ext str character>}]']'{<ext str
character>}[{<ext str character>}] | '\[' {<any character>}']' | '\<'{<macrostring element>}'>'

Page 58

<string elem ent> ::= {<ext str character>} | '\('<expression>')'

<const string> ::= '"' { <const string element> | '\!'{<const string element>| '"'}'\!' }'"'

<string> ::= '"' { <string element>| '\!'{<string element>| '"'}'\!' }'"'

<const binary data elem ent> ::= '\h'<space> [('2' | '4' | '8') <space>] | '\i'<space> [('2' | '4' | '8') <space>] | <hexadecimal
digit> {<hexadecimal digit>} { (<space> | ',' | <end-of-line>) <hexadecimal digit> {<hexadecimal digit>} } | <integer number> {
(<space> | ',' | <end-of-line>) <integer number> } | '\'<const string> | '\[' {<any character>}']' | '\$'<macro name>'$' | '\$"'
{<macrostring element>} '"' | '\<'{<macrostring element>}'>'

<binary data elem ent> ::= <const binary data element> | '\('<expression>')'

<const binary data> ::= ''' {<const binary data element>} '''

<binary data> ::= ''' {<binary data element>} '''

<const collection> ::= '%{' <constant> {','<constant>} '}'

<collection> ::= '%{' <expression> {','<expression>} '}'

<constant> ::= <number> | <const string> | <const binary data> | <const collection>

<array> ::= ['[' {','} ']'] [of <type name>]

<object> ::= <variable name> | <pointer> | <array element> | <field> | <function call> | <method call> | <expression> | <late binding>

<pointer> ::= <expression> '->' <type name> [<array>]

<param eters> ::= <expression> {','<expression>}

<array elem ent> ::= <object>'['<parameters>']'

<field> ::= [<object>]'.'<field name>

<late binding> ::=<object>'~' (<field name> | <method name>'(' [<parameters>] ')')

<function call> ::= (<function name> | <expression>'->'func) '(' [<parameters>] ')'

<m ethod call> ::= [<object>]'.'<method name>'(' [<parameters>] ')'

<lvalue> ::= <object> | <variable name> | <pointer> | <array element> | <field>

<as operation> ::= <variable name>'as' ((<type name>[<array>]) | <object>)

<operand> ::= <lvalue> | <constant> | <string> | <binary data> | <collection> | <function call> | <method call> | <type name> | <late
binding>

<increm ent operator> ::= '++' | '--'

<assignm ent operator> ::= '=' | '%=' | '&=' | '*=' | '+=' | '-=' | '/=' | '<<=' | '>>=' | '^=' | '|='

<unary operator> ::= '+' | '-' | '*' | '!' | '~' | '@'

<binary operator> ::= '==' | '!=' | '>' | '<' | '<=' | '>=' | '&&' | '||' | '&' | '%' | '*' | '/' | '+' | '-' | '<<' | '>>' | '^' | '%==' | '%!=' | '%>' | '%<' | '
%<=' | '%>=' | '@'

<operator> ::= <increment operator> | <assignment operator> | <unary operator> | <binary operator>

<assignm ent expression> ::= <lvalue><assignment operator><expression>

<lvalue expression> ::= '&'<lvalue> | '&'<function name> | <increment operator><lvalue> | <lvalue><increment operator>

<question> ::= '?''(' <expression>',' [<expression>] ',' [<expression>] ')'

<expression> ::= <operand> | <assignment expression> | <lvalue expression> | <expression><binary operator> [<end-of-line>]
<expression> | '('<expression>')' | <unary operator><expression> | <as operation> | <question>

<variable declaration> ::= <variable name> ['['<expression> { [','] <expression>} ']'] [of <type name>]

<variable list> ::= <variable declaration> ['='<expression>','<variable list>] | <variable declaration> [[',']<variable list>]

<variables declaration> ::= <type name><variable list><end-of-line>

Page 59

<if> ::= if <expression><block> {elif <expression> <block>} [else <block>]

<w hile> ::= w hile <expression><block>

<dow hile> ::= do <block> w hile <expression>

<for> ::= for [<expression>] ','<expression>',' [<expression>] <block>

<fornum > ::= fornum <variable name> ['='<expression>] ','<expression><block>

<foreach> ::= foreach [<type name>] <variable name> [<array>]','<expression><block>

<return> ::= return [<expression>]

<label> ::= label <name>

<goto> ::= goto <name>

<sw itch> ::= sw itch <expression>'{' {case <expression> {','<expression>} {<label>} <block>} [default {<label>} <block>] '}'

<block contents> ::= <block command> {<end-of-line><block command>}

<block> ::= '{'<block contents>'}'

<block com m and> ::= {<label>} (<block> | <expression> | <variables declaration> | <if> | <for> | <fornum> | <w hile> | <dow hile> |
<foreach> | <sw itch> | break | continue | <return>)

<param eter declaration> ::= <variable name> [<array>]

<param eters declaration> ::= <type name><parameter declaration> { [','] <parameter declaration>} [<parameters declaration>]

<attributes> ::= '<'<attribute name> { [','] <attribute name>} '>'

<subfunction> ::= subfunc [<type name>] <function name> ['(' [<parameters declaration>] ')'] <block>

<function body> ::= '{' (<block command> | <subfunction>) <block command> {<end-of-line> (<block command> | <subfunction>)
} '}'

<function declaration> ::= func [<type name>] <function name> [<attributes>] ['(' [<parameters declaration>] ')']

<func> ::= <function declaration><function body>

<m ethod declaration> ::= m ethod [<type name>] <type name>'.'<method name>[<attributes>] ['(' [<parameters declaration>] ')']

<m ethod> ::= <method declaration><function body>

<property declaration> ::= property [<type name>] <type name>'.'<method name> [<attributes>] ['(' [<parameters declaration>] '
)']

<property> ::= <property declaration><function body>

<operator declaration> ::= operator <type name> <operator> [<attributes>] '(' <parameters declaration> ')'

<operator function> ::= <operator declaration><function body>

<text-function declaration> ::= text <function name> [<attributes>]['(' [<parameters declaration>] ')']

<text-function body> ::= { <const string element> | '\@'<function name>'(' [<parameters>]> | '\('<expression>')' | '\{'(<block
command> | <subfunction>) <block command> {<end-of-line> (<block command> | <subfunction>) }'}' }['\!']

<text> ::= <text-function declaration><end-of-line><text-function body>

<m acro declaration> ::= <macro name> ['=' (<constant>|<name>)]

<define> ::= define [<name>][<attributes>] '{'<macro declaration> {<end-of-line><macro declaration>} '}'

<m acro expression> ::= '$'<macro name> | <constant> | '!'<macro expression> | '('<macro expression>')' | <macro expression>
('&&' | '||' | '==' | '!=') <macro expression>

<ifdef> ::= ifdef <macro expression> '{' ... '}' { elif <macro expression> '{' ... '}' } [else '{' ... '}']

<file nam e> ::= '"' {<str character>} '"'

Page 60

<include> ::= include '{'<file name> {<end-of-line><file name>} '}'

<im ported function declaration> ::= [<type name>] <function name> '(' [<type name> { ','<type name> }] ')' ['->' <function
name>]

<im port> ::= im port <file name> [<attributes>] '{' <imported function declaration> { <end-of-line><imported function declaration> }
'}'

<field declaration> ::= <field declaration> [<array declaration>]

<fields declaration> ::= <type name><field declaration> {[','] <field declaration>}<end-of-line>

<type> ::= type [<attributes>] '{'<fields declaration>{<fields declaration>} '}'

<array declaration> ::= ['['<natural number> { [','] <natural number>} ']'] [of <type name>]

<global variable declaration> ::= <variable name> [<array declaration>]['=' <constant>]

<global variables declaration> ::= <type name><global variable declaration> {[','] <global variable declaration>}<end-of-line>

<global> ::= global '{' {<global variables declaration>} '}'

<public> ::= public

<private> ::= private

<extern> ::= extern '{' {(<function declaration> | <method declaration> | <operator declaration> | <property declaration>
)<end-of-line>} '}'

<com m and> ::= <define> | <func> | <method> | <text> | <operator function> | <property> | <include> | <type> | <global> | <extern> |
<import> | <public> | <private> | <ifdef>

<program > ::= <command> {<end-of-line><command>}

Page 61

How to launch Gentee
This section deals w ith the follow ing questions

 Ways to run Gentee programs.
 Compiler configuration and options.
 Creating EXE files.
 Integration w ith other programming languages. In particular, using gentee.dll.

Table of contents
 Quick Launch
 Launch from Command Line
 Using '#!' command
 Compilation profiles

Page 62

Quick Launch
You may use any text editor to w rite and edit the source code of your Gentee program, w hich you should then save w ith the .g
extension. You w ill then be able to run it easily in Explorer or any file manager, by double-clicking it or pressing the Enter key. Files
w ith the .ge extension (compiled Gentee programs) are run in the same w ay. The .ge extension allow s you to run programs
faster, because they do not require additional compilation.

You w ill find some sample programs in the Gentee source files. Using a file manager or Explorer, open the directory to w hich you
installed Gentee (the default is C:\Program Files\Gentee), and select the Sam ples subdirectory to see a list of examples.

You can create shortcuts in Start->Program s or Desktop for frequently-used Gentee programs, to launch them more easily and
quickly. Use the extension .g or .ge to make the file executable.

Related links
 Using '#!' command
 Compilation profiles

Page 63

Launch from Command Line
A program in the Gentee language is compiled and run w ith the console application gentee.exe . Command line options don't cover
all gentee features. So, use Compilation profiles for specifing advanced parameters of the compilation.

gentee.exe [switches] <Gentee file> [arguments]

switches

Compiler options. You can use the follow ing options during compilation.

-a The compiler translates the bytecode to assembler. At this moment, it does NOT translate ALL bytecode to
assembler but this option can increase the speed of some programs in several times.

-c Only compilation. Do not run the program after the compilation.

-d Add the debug information into the byte-code.

-m <m acros> Defining compilation macros. You can define the necessary compilation macros after -m . You should use '\'
before quotation marks. Macro definitions must be separated w ith a semicolon.
Example: -m "MODE=1;NAME=\"My Com pany, Inc\""\

-f Create a .ge file w ith byte code. It w ill be created in the same directory and w ill have the same name.

-n Ignore the command '#!' in the first string of the file. See Using '#!' command.

-o <GE or EXE
filenam e>

Specify a name for the compiled file. In this case, next part should be the name of the output file. This feature is
used if you w ant the file w ith bytecode or exe file to have a name (or destination) different from the source file.
By default, the compiled byte-code is stored in the file w ith .ge extension.

-p <profile
nam e>

Use profile parameters from the file gentee.ini. See Compilation profiles.

-s Do not display service message during compilation or running.

-t Automatically convert text to the ÎÅÌ encoding (DOS encoding) w hen displaying it on the console.

-d Include debug information into the byte-code.

-w Wait for pressing key at the end of the compilation.

-z[d][n][u] Optimize a byte-code (-f or -x compatible)
-zd - Delete defines.
-zn - Delete names.
-zu - Delete no used objects.
-z equals -zdnu. Combine -zd, -zn and -zu.

-x[d][g][a][r] Create executable EXE file.
-xd - Dynamic usage of gentee.dll.
-xg - Make a gui application. In default a console application is created.
-xa - Specify this option if your program or its part is compiled w ith -a option.
-xr - Specify it if you w ant that the bytecode is translated to assembler each time w hen you run the program.
Don't use this parameter w ith -a option.
-xdgr - Combine -xd,-xr and -xg.

-i <icon file> Link .ico file (-x compatible). Example -i "c:\data\myicon.ico"

-r <res file> Link .res file (-x compatible). Example -r "c:\data\myres.res"
Gentee file

This parameter is a required one and must define the name of the compilation file or the file w ith byte code to be executed.
arguments

All parameters after the name of the file being run are command line parameters that w ill be passed over to the program being run.
Examples
gentee.exe -t myfile.g

gentee.exe -s myapp.g "command line argument" 10 20

gentee.exe -o "c:\temp\app.ge" -c myapp.ge "command line argument"

gentee.exe -p myprofile "c:\my programs\myfile.g"

Related links
 Using '#!' command
 Compilation profiles

Page 64

Using #!' command'
Under Linux, '#!' in the first line is used to start the compiler. Under Window s, you can also use the first line in a file to start any
programs, including those used for compiling w ith the necessary parameters. If you click such a .g file or press Enter, the
specified command line w ill be executed. It allow s you to avoid using additional batch files (.bat) and specify compiling options
different from default options.

You can specify both absolute and relative paths to the program and the file you w ant to start. You can specify %1 as the full
name of the current file. If the path contains spaces, you should enclose it in double quotation marks.

Examples
#!gentee.exe -s hello.g

#!gentee.exe -t -f "%1"

#!"C:\My Application\my.bat" "%1"

#!ge2exe.exe "%1"

Using profiles
You can specify profile parameters at the beginning of the source .g file. Parameters must be described from the first line and the
first character of the line must be . See names of parameters in Compilation profiles.

Example
#output = %EXEPATH%\gentee-x.exe

#norun = 1

#exe = 1 d g

#optimizer = 1

#wait = 3

#res = ..\..\res\exe\version.res

Page 65

Compilation profiles
Besides specifying compilation options directly w hen running Gentee program, you can store all necessary parameters in a
separate profile and you w ill only have to specify the name of this profile w hen you run the compiler. Profiles must be described in
the text file gentee.ini located in one directory w ith gentee.exe . The profile name is specified after the option -p. For example:
gentee.exe -p m yoptions test.g. By default, the compilation profile named default is used w hen you run a Gentee program.

You can specify a compilation profile at the beginning of your .g source file. See Using '#!' command for more details.

asm = <0 1> If 1, the compiler translates the bytecode to assembler. At this moment, it does NOT translate ALL bytecode
to assembler but this option can increase the speed of some programs in several times.

silent = <0 1> If 1, do not display service messages during the compilation or launch.

charoem = <0 1> If 1, convert strings into the OEM (DOS) encoding w hen displaying them on the console.

debug = <0 1> If 1, the debug information w ill be included into the byte-code during the compilation.

gefile = <0 1> If 1, create a .ge file during the compilation.

norun = <0 1> If 1, do not run the program after the compilation.

num sign = <0 1> If 0, ignore the first string w ith #! in the body of the program being run.

output = <.ge or
.exe filenam e>

You can specify the full path and name of the creating .ge or .exe file here.

define = <m acro =
value>

The parameter is used to define compilation macros. You can specify some define parameters:
define1,define2,define3....

include = <.g or .ge
file>

You can specify additional .g or .ge files that w ill be added at the beginning of the compilation. It is the same
as using the include command in a Gentee program. You can specify some include files w ith
include1,include2,include3....

libdir = <directory> The parameter allow s you to specify the search path for .g or .ge files included in the program. If the path is
specified, it is enough to specify only the file name. You can specify some search directories w ith
libdir1,libdir2,libdir3....

w ait = <0 1..n> If 1, the compiler w ill w ait for pressing key at the end of the compilation. If you specify a number greater 1
then the compiler w ill be w ait <w ait> seconds and close the console w indow .

optim izer = <0 1 (d
n u)>

If 1, the byte-code w ill be optimized. You can specify the additional parameters d, n or u after 1 divided by a
space character.
d - Delete defines.
n - Delete names.
u - Delete no used objects.
For example: optim izer = 1 d n u

exe = <0 1 (d g r a)> If 1, the executable EXE file w ill be created. You can specify the additional parameters d g a r divided by a
space character.
d - Dynamic usage of gentee.dll.
g - Make a gui application. By default a console application is created.
a - Specify this option if your program or its part w as compiled w ith asm option.
r - Specify this parameter if you w ant that the bytecode is translated to assembler each time w hen you run
the program. Don't use this parameter if your program has been compiled w ith asm option.
For example: exe = 1 d g r

icon = <.ico file> You can specify additional .ico files for EXE file. It is possible to specify some icon files w ith
icon1,icon2,icon3....

res = <.res file> You can specify additional resource .res files for EXE file. It is possible to specify some resource files w ith
res1,res2,res3....

args =
<param eter>

Command line parameter for launching of the program . It is possible to specify some command line
parameters w ith args1,args2,args3....

Additional features
You can use the follow ing predefined parameters.

%GNAME% The name of the compiling Gentee file w ithout the extension.

%GPATH% The full path to Gentee file.

%EXEPATH% The full path to the gentee.exe compiler.
Example
[default]

Page 66

charoem = 1

gefile = 0

libdir = %EXEPATH%\lib

libdir1 = %EXEPATH%\..\lib\vis

include = %EXEPATH%\lib\stdlib.ge

[myoptions]

charoem = 1

output = c:\My Files\Programs\%GNAME%.ge

libdir = %EXEPATH%\lib

include = %EXEPATH%\lib\stdlib.ge

include1 = c:\mylibs\mylib.g

define = MODE = 1

define1 = COMPANY = "My Company, Inc."

Page 67

Library Reference
Table of contents

Array Array.

Array Of Strings Array of strings.

Array Of Unicode Strings Array of unicode strings.

Buffer Binary data.

Clipboard These functions are used to w ork w ith the Window s clipboard.

Collection Collection.

COM/OLE Working w ith COM/OLE Object.

Console Console library.

CSV Working w ith CSV data.

Date & Tim e Functions for w orking w ith date and time.

Dbf This library is used to w ork w ith dbf files.

Files File system functions.

FTP FTP protocol.

Gentee API Gentee API functions for the using of gentee.dll.

Hash Hash (Associative array).

HTTP HTTP protocol.

INI File INI files.

Keyboard These functions are used to emulate the w ork of the keyboard.

Math Mathematical functions.

Mem ory Functions for memory management.

ODBC (SQL) Data Access (SQL queries) Using ODBC.

Process Process, shell, arguments and environment functions.

Registry Working w ith the Registry.

Socket Sockets and common internet functions.

Stack Stack.

String Strings.

String - Filenam e Filename strings.

String - Unicode Unicode strings.

System System functions.

Thread This library allow s you to create threads and w ork w ith them.

Tree Tree object.

XML XML file processing.

Page 68

Array
Array. You can use variables of the arr type for w orking w ith arrays. The arr type is inherited from the buf type.

 Operators
 Methods

Operators

* arr Get the count of items.

foreach var,arr Foreach operator.

arr of type Specifying the type of items.

arr[i] Getting [i] item of the array.
Methods

arr.clear Clear an array.

arr.cut Reducing an array.

arr.del Deleting item(s).

arr.expand Add items to an array.

arr.insert Insert elements.

arr.m ove Move an item.

arr.sort Sorting an array.

Page 69

* arr
Get the count of items.

operator uint * (

 arr left

)

Return value
Count of array items.

Related links
 Array

Page 70

foreach var,arr
Foreach operator. You can use foreach operator to look over items of the array.

foreach variable,array {...}

Related links
 Array

Page 71

arr of type
Specifying the type of items. You can specify of type w hen you describe arr variable. In default, the type of the items is uint.

method arr.oftype (

 uint itype

)

Related links
 Array

Page 72

arr[i]
 method uint arr.index(uint i)
 method uint arr.index(uint i, uint j)
 method uint arr.index(uint i, uint j, uint k)

Getting [i] item of the array.

method uint arr.index (

 uint i

)

Return value
The [i] item of the array.

arr[i,j]
Getting [i,j] item of the array.

method uint arr.index (

 uint i,

 uint j

)

Return value
The [i,j] item of the array.

arr[i,j,k]
Getting [i,j,k] item of the array.

method uint arr.index (

 uint i,

 uint j,

 uint k

)

Return value
The [i,j,k] item of the array.

Related links
 Array

Page 73

arr.clear
Clear an array. The method removes all items from the array.

method arr arr.clear()

Return value
Returns the object w hich method has been called.

Related links
 Array

Page 74

arr.cut
Reducing an array. All items exceeding the specified number w ill be deleted.

method arr.cut (

 uint count

)

Parameters
count The number of items left in the array.

Related links
 Array

Page 75

arr.del
 method arr.del(uint num)
 method arr arr.del(uint from, uint count)

Deleting item(s). The method removes an item w ith the specified number.

method arr.del (

 uint num

)

Parameters
num The number of item starting from 0.

arr.del
The method removes items from the array.

method arr arr.del (

 uint from,

 uint count

)

Parameters
from The number of the first item being deleted (from 0).

count The count of the items to be deleted.

Return value
Returns the object w hich method has been called.

Related links
 Array

Page 76

arr.expand
Add items to an array.

method uint arr.expand (

 uint count

)

Parameters
count The number of items being added.

Return value
The index of the first added item.

Related links
 Array

Page 77

arr.insert
 method arr.insert(uint id)
 method uint arr.insert(uint from, uint count)

Insert elements. The method inserts an element into the array at the specified index.

method arr.insert (

 uint id

)

Parameters
id The index of the element needs to be inserted.

arr.insert
The method inserts elements into the array at the specified index.

method uint arr.insert (

 uint from,

 uint count

)

Parameters
from The index of the first inserted element starts at zero.

count The amount of elements are required to be inserted.

Return value
The index of the first inserted item.

Related links
 Array

Page 78

arr.move
Move an item.

method arr.move (

 uint from,

 uint to

)

Parameters
from The current index of the item starting from zero.

to The new index of the item starting from zero.

Related links
 Array

Page 79

arr.sort
Sorting an array. Sort array items according to the sorting function. The function must have tw o parameters containing pointers to
tw o compared items. It must return int less than, equal to or greater than zero if the left value is less than, equal to or greater than
the first one respectively.

method arr arr.sort (

 uint sortfunc

)

Parameters
sortfunc Sorting function.

Return value
Returns the object w hich method has been called.

Related links
 Array

Page 80

Array Of Strings
Array of strings. You can use variables of the arrstr type for w orking w ith arrays of strings. The arrstr type is inherited from
the arr type. So, you can also use methods of the arr type.

 Operators
 Methods
 Related Methods
 Type

Operators

arrstr = type Convert types to the array of strings.

str = arrstr Convert an array of strings to a multi-line string.

arrstr += type Append types to an array of strings.
Methods

arrstr.insert Insert a string to an array of strings.

arrstr.load Add lines to the array from multi-line string.

arrstr.read Read a multi-line text file to array of strings.

arrstr.replace Replace substrings for the each item.

arrstr.setm ultistr Create a multi-string buffer.

arrstr.sort Sort strings in the array.

arrstr.unite... Unite strings of the array.

arrstr.w rite Write an array of strings to a multi-line text file.
Related Methods

buf.getm ultistr Convert a buffer to array of strings.

str.lines Convert a multi-line string to an array of strings.

str.split Splitting a string.
Type

arrstr The main structure of array of strings.

Page 81

arrstr = type
 operator arrstr =(arrstr dest, str src)
 operator arrstr =(arrstr dest, arrstr src)
 operator arrstr =(arrstr left, collection right)

Convert types to the array of strings. Convert a multi-line string to an array of strings.

operator arrstr = (

 arrstr dest,

 str src

)

Return value
The array of strings.

arrstr = arrstr
Copy one array of strings to another array of strings.

operator arrstr = (

 arrstr dest,

 arrstr src

)

arrstr = collection
Copy a collection of strings to the array of strings.

operator arrstr = (

 arrstr left,

 collection right

)

Related links
 Array Of Strings

Page 82

str = arrstr
Convert an array of strings to a multi-line string.

operator str = (

 str dest,

 arrstr src

)

Return value
The result string.

Related links
 Array Of Strings

Page 83

arrstr += type
 operator arrstr +=(arrstr dest, str new str)
 operator arrstr +=(arrstr dest, arrstr src)

Append types to an array of strings. The operator appends a string at the end of the array of strings.

operator arrstr += (

 arrstr dest,

 str newstr

)

Return value
Returns the object w hich method has been called.

arrstr += arrstr
The operator appends one array of strings to another array of strings.

operator arrstr += (

 arrstr dest,

 arrstr src

)

Related links
 Array Of Strings

Page 84

arrstr.insert
Insert a string to an array of strings.

method arrstr arrstr.insert (

 uint index,

 str newstr

)

Parameters
index The index of the item w here the string w ill be inserted.

newstr The inserting string.

Return value
Returns the object w hich method has been called.

Related links
 Array Of Strings

Page 85

arrstr.load
 method arrstr arrstr.load(str input, uint flag)
 method arrstr arrstr.loadtrim(str input)

Add lines to the array from multi-line string.

method arrstr arrstr.load (

 str input,

 uint flag

)

Parameters
input The input string.

flag Flags.

$ASTR_APPEND Adding strings. Otherw ise, the array is cleared before loading.

$ASTR_TRIM Delete characters <= space on the left and on the right.

Return value
Returns the object w hich method has been called..

arrstr.loadtrim
Add lines to the array from multi-line string w ith trimming.

method arrstr arrstr.loadtrim (

 str input

)

Parameters
input The input string.

Related links
 Array Of Strings

Page 86

arrstr.read
Read a multi-line text file to array of strings.

method uint arrstr.read (

 str filename

)

Parameters
filename The filename.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Array Of Strings

Page 87

arrstr.replace
Replace substrings for the each item. The method looks for strings from one array and replace to strings of another array for the
each string of the array.

method arrstr arrstr.replace (

 arrstr aold,

 arrstr anew,

 uint flags

)

Parameters
aold The strings to be replaced.

anew The new strings.

flags Flags.

$QS_IGNCASE Case-insensitive search.

$QS_WORD Search the w hole w ord only.

$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.

Return value
Returns the object w hich method has been called.

Related links
 Array Of Strings

Page 88

arrstr.setmultistr
 method buf arrstr.setmultistr(buf dest)
 method buf arrstr.setmultistr <result>

Create a multi-string buffer. The method w rites strings to a multi-string buffer w here strings are divided by zero character.

method buf arrstr.setmultistr (

 buf dest

)

Parameters
dest The result buffer.

Return value
The result buffer.

The method creates a multi-string buffer w here strings are divided by zero character.

method buf arrstr.setmultistr <result>

Return value
The new result buffer.

Related links
 Array Of Strings

Page 89

arrstr.sort
Sort strings in the array.

method arrstr.sort (

 uint mode

)

Parameters
mode Specify 1 to sort w ith ignore-case sensitive. In default, specify 0.

Related links
 Array Of Strings

Page 90

arrstr.unite...
 method str arrstr.unite(str dest, str separ)
 method str arrstr.unite(str dest)
 method str arrstr.unitelines(str dest)

Unite strings of the array. The method unites all items of the array to a string w ith the specified separator string.

method str arrstr.unite (

 str dest,

 str separ

)

Parameters
dest The result string.

separ A separator of the strings.

Return value
The result string.

arrstr.unite
The method unites all items of the array to a string.

method str arrstr.unite (

 str dest

)

Parameters
dest The result string.

arrstr.unitelines
The method unites items of the array to a multi-line string. It inserts new -line characters betw een the each string of the array.

method str arrstr.unitelines (

 str dest

)

Parameters
dest The result string.

Related links
 Array Of Strings

Page 91

arrstr.write
Write an array of strings to a multi-line text file.

method uint arrstr.write (

 str filename

)

Parameters
filename The filename.

Return value
The size of w ritten data.

Related links
 Array Of Strings

Page 92

arrstr
The main structure of array of strings.

type arrstr <inherit=arr index=str>

{

}

Related links
 Array Of Strings

Page 93

Array Of Unicode Strings
Array of unicode strings. You can use variables of the arrustr type for w orking w ith arrays of unicode strings. The arrustr type
is inherited from the arr type. So, you can also use methods of the arr type.

 Operators
 Methods
 Related Methods
 Type

Operators

arrustr = type Convert types to the array of unicode strings.

ustr = arrustr Convert an array of unicode strings to a multi-line unicode string.

arrustr += type Append types to an array of unicode strings.
Methods

arrustr.insert Insert a unicode string to an array of unicode strings.

arrustr.load Add lines to the array of unicode strings from multi-line unicode string.

arrustr.read Read a multi-line text file to array of unicode strings.

arrustr.setm ultiustr Create a multi-string buffer.

arrustr.sort Sort unicode strings in the array.

arrustr.unite... Unite unicode strings of the array.

arrustr.w rite Write an array of unicode strings to a multi-line text file.
Related Methods

buf.getm ultiustr Convert a buffer to array of unicode strings.

ustr.lines Convert a multi-line unicode string to an array of unicode strings.

ustr.split Splitting a unicode string.
Type

arrustr The main structure of array of unicode strings.

Page 94

arrustr = type
 operator arrustr =(arrustr dest, ustr src)
 operator arrustr =(arrustr dest, arrustr src)
 operator arrustr =(arrustr left, collection right)

Convert types to the array of unicode strings. Convert a multi-line unicode string to an array of unicode strings.

operator arrustr = (

 arrustr dest,

 ustr src

)

Return value
The array of unicode strings.

arrustr = arrustr
Copy one array of unicode strings to another array of unicode strings.

operator arrustr = (

 arrustr dest,

 arrustr src

)

arrustr = collection
Copy a collection of strings (simple or unicode) to the array of unicode strings.

operator arrustr = (

 arrustr left,

 collection right

)

Related links
 Array Of Unicode Strings

Page 95

ustr = arrustr
Convert an array of unicode strings to a multi-line unicode string.

operator ustr = (

 ustr dest,

 arrustr src

)

Return value
The result string.

Related links
 Array Of Unicode Strings

Page 96

arrustr += type
 operator arrustr +=(arrustr dest, ustr new str)
 operator arrustr +=(arrustr dest, arrustr src)

Append types to an array of unicode strings. The operator appends a unicode string at the end of the array of unicode strings.

operator arrustr += (

 arrustr dest,

 ustr newstr

)

Return value
Returns the object w hich method has been called.

arrustr += arrustr
The operator appends one array of unicode strings to another array of unicode strings.

operator arrustr += (

 arrustr dest,

 arrustr src

)

Related links
 Array Of Unicode Strings

Page 97

arrustr.insert
Insert a unicode string to an array of unicode strings.

method arrustr arrustr.insert (

 uint index,

 ustr newstr

)

Parameters
index The index of the item w here the string w ill be inserted.

newstr The inserting unicode string.

Return value
Returns the object w hich method has been called.

Related links
 Array Of Unicode Strings

Page 98

arrustr.load
 method arrustr arrustr.load(ustr input, uint flag)
 method arrustr arrustr.loadtrim(ustr input)

Add lines to the array of unicode strings from multi-line unicode string.

method arrustr arrustr.load (

 ustr input,

 uint flag

)

Parameters
input The input unicode string.

flag Flags.

$ASTR_APPEND Adding strings. Otherw ise, the array is cleared before loading.

$ASTR_TRIM Delete characters <= space on the left and on the right.

Return value
Returns the object w hich method has been called..

arrustr.loadtrim
Add lines to the array of unicode strings from multi-line unicode string w ith trimming.

method arrustr arrustr.loadtrim (

 ustr input

)

Parameters
input The input unicode string.

Related links
 Array Of Unicode Strings

Page 99

arrustr.read
Read a multi-line text file to array of unicode strings.

method uint arrustr.read (

 str filename

)

Parameters
filename The filename.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Array Of Unicode Strings

Page 100

arrustr.setmultiustr
Create a multi-string buffer. The method w rites unicode strings to a buffer.

method buf arrustr.setmultiustr (

 buf dest

)

Parameters
dest The result buffer.

Return value
The result buffer.

Related links
 Array Of Unicode Strings

Page 101

arrustr.sort
Sort unicode strings in the array.

method arrustr.sort (

 uint mode

)

Parameters
mode Specify 1 to sort w ith ignore-case sensitive. In default, specify 0.

Related links
 Array Of Unicode Strings

Page 102

arrustr.unite...
 method ustr arrustr.unite(ustr dest, ustr separ)
 method ustr arrustr.unitelines(ustr dest)

Unite unicode strings of the array. The method unites all items of the array to a unicode string w ith the specified separator string.

method ustr arrustr.unite (

 ustr dest,

 ustr separ

)

Parameters
dest The result unicode string.

separ A separator of the strings.

Return value
The result unicode string.

arrustr.unitelines
The method unites items of the array to a multi-line unicode string. It inserts new -line characters betw een the each string of the
array.

method ustr arrustr.unitelines (

 ustr dest

)

Parameters
dest The result unicode string.

Related links
 Array Of Unicode Strings

Page 103

arrustr.write
Write an array of unicode strings to a multi-line text file.

method uint arrustr.write (

 str filename

)

Parameters
filename The filename.

Return value
The size of w ritten data.

Related links
 Array Of Unicode Strings

Page 104

arrustr
The main structure of array of unicode strings.

type arrustr <inherit=arr index=ustr>

{

}

Related links
 Array Of Unicode Strings

Page 105

Buffer
Binary data. It is possible to use variables of the buf type for w orking w ith memory. Use this type if you w ant to store and manage
the binary data.

 Operators
 Methods

Operators

* buf Get the size of the memory being used.

buf[i] Getting byte <i> from the buffer.

buf = buf Copying data from one buffer into another.

buf + buf Putting tw o buffers together and creating a resulting buffer.

buf += type Appending types to the buffer.

buf == buf Comparison operation.

buf(type) Converting types to buf.
Methods

buf.align Data alignment.

buf.append Data addition.

buf.clear Clear data in the object.

buf.copy Copying.

buf.crc Calculating the checksum.

buf.del Data deletion.

buf.expand Expansion.

buf.free Memory deallocation.

buf.findch Find a byte in a binary data.

buf.getm ultistr Convert a buffer to array of strings.

buf.getm ultiustr Convert a buffer to array of unicode strings.

buf.insert Data insertion.

buf.ptr Get the pointer to memory.

buf.read Reading from a file.

buf.replace Replacing data.

buf.reserve Memory reservation.

buf.w rite Writing to a file.

buf.w riteappend Appending data to a file.

Page 106

* buf
Get the size of the memory being used.

operator uint * (

 buf left

)

Return value
The size of the used memory.

Related links
 Buffer

Page 107

buf[i]
Getting byte <i> from the buffer.

method uint buf.index (

 uint i

)

Return value
The value of byte i of the memory data.

Related links
 Buffer

Page 108

buf = buf
Copying data from one buffer into another.

operator buf = (

 buf left,

 buf right

)

Return value
The result buffer.

Related links
 Buffer

Page 109

buf + buf
Putting tw o buffers together and creating a resulting buffer.

operator buf +<result> (

 buf left,

 buf right

)

Return value
The new result buffer.

Related links
 Buffer

Page 110

buf += type
 operator buf +=(buf left, buf right)
 operator buf +=(buf left, ubyte right)
 operator buf +=(buf left, uint right)
 operator buf +=(buf left, ushort right)
 operator buf +=(buf left, ulong right)

Appending types to the buffer. Append buf to buf => buf += buf.

operator buf += (

 buf left,

 buf right

)

Return value
The result buffer.

buf += ubyte
Append ubyte to buf => buf += ubyte .

operator buf += (

 buf left,

 ubyte right

)

buf += uint
Append uint to buf => buf += uint.

operator buf += (

 buf left,

 uint right

)

buf += ushort
Append ushort to buf => buf += ushort.

operator buf += (

 buf left,

 ushort right

)

buf += ulong
Append ulong to buf => buf += ulong.

operator buf += (

 buf left,

 ulong right

)

Related links
 Buffer

Page 111

buf == buf
 operator uint ==(buf left, buf right)
 operator uint !=(buf left, buf right)

Comparison operation.

operator uint == (

 buf left,

 buf right

)

Return value
Returns 1 if the buffers are equal. Otherw ise, it returns 0.

buf != buf
Comparison operation.

operator uint != (

 buf left,

 buf right

)

Return value
Returns 0 if the buffers are equal. Otherw ise, it returns 1.

Related links
 Buffer

Page 112

buf(type)
Converting types to buf. Convert uint to buf => buf(uint).

method buf uint.buf<result>

Return value
The result buffer.

Related links
 Buffer

Page 113

buf.align
Data alignment. The method aligns the binary data and appends zeros if it is required.

method buf buf.align

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 114

buf.append
Data addition. The method adds data to the object.

method buf buf.append (

 uint ptr,

 uint size

)

Parameters
ptr The pointer to the data to be added.

size The size of the data being added.

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 115

buf.clear
Clear data in the object. This method sets the size of the binary data to zero.

method buf buf.clear()

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 116

buf.copy
Copying. The method copies a binary data into the object.

method buf buf.copy (

 uint ptr,

 uint size

)

Parameters
ptr The pointer to the data being copied.

size The size of the data being copied.

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 117

buf.crc
Calculating the checksum. The method calculates the checksum of data for an object of the buf.

method uint buf.crc

Return value
The checksum is returned.

Related links
 Buffer

Page 118

buf.del
Data deletion. The method deletes part of the buffer.

method buf buf.del (

 uint offset,

 uint size

)

Parameters
offset The offset of the data being deleted.

size The size of the data being deleted.

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 119

buf.expand
Expansion. The method increases the size of memory allocated for the object.

method buf buf.expand (

 uint size

)

Parameters
size The requested additional size of memory. It is an additional size to be reserved in the buffer.

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 120

buf.free
Memory deallocation. The method deallocates memory allocated for the object and destroys all data.

method buf buf.free()

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 121

buf.findch
Find a byte in a binary data.

method uint buf.findch (

 uint offset,

 uint ch

)

Parameters
offset The offset to start searching from.

ch A unsigned byte to be searched.

Return value
The offset of the byte if it is found. If the byte is not found, the size of the buffer is returned.

Related links
 Buffer

Page 122

buf.getmultistr
 method arrstr buf.getmultistr(arrstr ret, arr offset)
 method arrstr buf.getmultistr(arrstr ret)

Convert a buffer to array of strings. Load the array of string from multi-string buffer w here strings are divided by zero character.

method arrstr buf.getmultistr (

 arrstr ret,

 arr offset

)

Parameters
ret The result array of strings.

offset The array for getting offsets of strings in the buffer. It can be 0->>arr.

Return value
The result array of strings.

buf.getmultistr
Load the array of string from multi-string buffer w here strings are divided by zero character.

method arrstr buf.getmultistr (

 arrstr ret

)

Parameters
ret The result array of strings.

Related links
 Buffer

Page 123

buf.getmultiustr
Convert a buffer to array of unicode strings. Load the array of string from multi-string buffer w here strings are divided by zero
character.

method arrustr buf.getmultiustr (

 arrustr ret

)

Parameters
ret The result array of unicode strings.

Return value
The result array of unicode strings.

Related links
 Buffer

Page 124

buf.insert
 method buf buf.insert(uint offset, buf value)
 method buf buf.insert(uint offset, uint ptr, uint size)

Data insertion. The method inserts one buf object into another.

method buf buf.insert (

 uint offset,

 buf value

)

Parameters
offset The offset w here data w ill be inserted. If the offset is greater than the size, data is added to the end to the buffer.

value The buf object w ith the data to be inserted.

Return value
Returns the object w hich method has been called.

buf.insert
The method inserts one memory data into the buffer.

method buf buf.insert (

 uint offset,

 uint ptr,

 uint size

)

Parameters
offset The offset w here data w ill be inserted. If the offset is greater than the size, data is added to the end to the buffer.

ptr The pointer to the memory data to be inserted.

size The size of the data to be inserted.

Related links
 Buffer

Page 125

buf.ptr
Get the pointer to memory.

method buf buf.ptr()

Return value
The pointer to the allocated memory of the binary data.

Related links
 Buffer

Page 126

buf.read
Reading from a file. The method reads data from the file.

method uint buf.read (

 str filename

)

Parameters
filename Filename.

Return value
The size of the read data.

Related links
 Buffer

Page 127

buf.replace
Replacing data. The method replaces binary data in an object.

method buf buf.replace (

 uint offset,

 uint size,

 buf value

)

Parameters
offset The offset of the data being replaced.

size The size of the data being replaced.

value The buf object w ith new data.

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 128

buf.reserve
Memory reservation. The method increases the size of memory allocated for the object.

method buf buf.reserve (

 uint size

)

Parameters
size The summary requested size of memory. If it is less than the current size, nothing happens. If the size is increased, the

current data is saved.

Return value
Returns the object w hich method has been called.

Related links
 Buffer

Page 129

buf.write
Writing to a file. The method w rites data to the file.

method uint buf.write (

 str filename

)

Parameters
filename Filename.

Return value
The size of the w ritten data.

Related links
 Buffer

Page 130

buf.writeappend
Appending data to a file. The method appends data to the specified file.

method uint buf.writeappend (

 str filename

)

Parameters
filename Filename.

Return value
The size of the w ritten data.

Related links
 Buffer

Page 131

Clipboard
These functions are used to w ork w ith the Window s clipboard. For using this library, it is required to specify the file clipboard.g
(from lib\clipboard subfolder) w ith include command.

include : $"...\gentee\lib\clipboard\clipboard.g"

 Methods

clipboard_gettext Gets a string from the clipboard.

clipboard_em pty Clear the clipboard.

clipboard_settext Copies a string into the clipboard.
Methods

buf.getclip Copy the clipboard data to buf variable.

buf.setclip Copy the data of the buf variable to the clipboard.

str.getclip Copy the clipboard data to str variable if the clipboard contains text data.

str.setclip Copy a string to the clipboard.

ustr.getclip Copy the clipboard data to unicode str variable if the clipboard contains unicode text data.

ustr.setclip Copy a unicode string to the clipboard.

Page 132

clipboard_gettext
Gets a string from the clipboard.

{

Parameters
data Result string.

Return value
Returns the parameter data.

Related links
 Clipboard

Page 133

clipboard_empty
Clear the clipboard.

func uint clipboard_empty

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 134

clipboard_settext
Copies a string into the clipboard.

func uint clipboard_settext (

 str data

)

Parameters
data The string for copying into the clipboard.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 135

buf.getclip
Copy the clipboard data to buf variable.

method uint buf.getclip (

 uint cftype

)

Parameters
cftype The type of the clipboard data.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 136

buf.setclip
Copy the data of the buf variable to the clipboard.

method uint buf.setclip (

 uint cftype locale

)

Parameters
cftype The type of the buf data.

locale Locale identifier. It can be 0.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 137

str.getclip
Copy the clipboard data to str variable if the clipboard contains text data.

method uint str.getclip()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 138

str.setclip
Copy a string to the clipboard.

method uint str.setclip()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 139

ustr.getclip
Copy the clipboard data to unicode str variable if the clipboard contains unicode text data.

method uint ustr.getclip()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 140

ustr.setclip
Copy a unicode string to the clipboard.

method uint ustr.setclip()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Clipboard

Page 141

Collection
Collection. You can use variables of the collection type for w orking w ith collections. Collection is an object w hich can contains
objects of different types. The collection type is inherited from the buf type. So, you can also use methods of the buf type.

 Operators
 Methods
 Types

Operators

* collection Gets the amount of elements in the collection.

collection[i] Gets a value of a collection element.

collection = collection Collection copying.

collection += collection Appends elements of a collection to another collection.

collection + collection Putting tw o collections together and creating a resulting collection.

foreach var,collection Foreach operator.
Methods

collection.append Append an object or a numeric value to the collection.

collection.clear Delete all items from the collection.

collection.gettype Gets an element type of a collection.

collection.ptr Gets a pointer to a collection element.
Types

colitem The structure is used in foreach operator.

Page 142

* collection
Gets the amount of elements in the collection.

operator uint * (

 collection left

)

Return value
The count of the collection items.

Related links
 Collection

Page 143

collection[i]
Gets a value of a collection element. Don't use if the collection contains double, ulong or long types.

method uint collection.index (

 uint ind

)

Return value
A value of the collection element.

Related links
 Collection

Page 144

collection = collection
Collection copying.

operator collection = (

 collection left,

 collection right

)

Related links
 Collection

Page 145

collection += collection
Appends elements of a collection to another collection.

operator collection += (

 collection left,

 collection right

)

Related links
 Collection

Page 146

collection + collection
Putting tw o collections together and creating a resulting collection.

operator collection +<result> (

 collection left,

 collection right

)

Return value
The new result collection.

Related links
 Collection

Page 147

foreach var,collection
Foreach operator. You can use foreach operator to look over items of the collection. The variable var has colitem type.

foreach variable,collection {...}

Related links
 Collection

Page 148

collection.append
Append an object or a numeric value to the collection.

method uint collection.append (

 uint value,

 uint itype

)

Parameters
value The value of the 32-bit number or the pointer to 64-bit number or the ponter to any other object.

itype The type of the appending value.

Return value
An index of the appended item.

Related links
 Collection

Page 149

collection.clear
Delete all items from the collection.

method collection collection.clear()

Return value
Returns the object w hich method has been called.

Related links
 Collection

Page 150

collection.gettype
Gets an element type of a collection.

method uint collection.gettype (

 uint ind

)

Parameters
ind Element index starts at zero.

Return value
An element type of a collection or zero on error.

Related links
 Collection

Page 151

collection.ptr
Gets a pointer to a collection element.

method uint collection.ptr (

 uint ind

)

Parameters
ind Element index starts at zero.

Return value
A pointer to a collection element, or zero on error.

Related links
 Collection

Page 152

colitem
The structure is used in foreach operator. The variable of the foreach operator has this type.

type colitem

{

 uint oftype

 uint val

 uint hival

 uint ptr

}

Members
oftype The type of the item.

val The value of the item.

hival The hi-uint of the value. It is used if the value is 64-bit.

ptr The pointer to the value.

Related links
 Collection

Page 153

COM/OLE
Working w ith COM/OLE Object. The COM library is applied for w orking w ith the COM/OLE objects , the IDispatch interface and
maintains late binding operations. For using this library, it is required to specify the file olecom.g (from lib\olecom subfolder) w ith
include command.

include : $"...\gentee\lib\olecom\olecom.g"

 Operators
 Methods
 VARIANT Methods

COM/OLE description A brief description of COM/OLE library.

VARIANT VARIANT type.
Operators

type = VARIANT Assign operation.

VARIANT = type Assign operation.

type(VARIANT) Conversion.
Methods

oleobj.createobj The method creates a new COM object.

oleobj.getres Result of the last operation.

oleobj.iserr Enables to define w hether or not an error occurs w hile w orking w ith a COM object.

oleobj.release Releasing the COM object.
VARIANT Methods

variant.arrcreate Creating the SafeArray array.

variant.arrfrom g Assigning a value to an element of the SafeArray array.

variant.arrgetptr Obtaining a pointer to an element of the SafeArray array.

variant.clear Clears the variable contents, the storage area is released if necessary.

variant.ism issing Checks if the variant is "missing" (optional) parameter of the method.

variant.isnull Enables to define w hether or not a variable is NULL.

variant.setm issing Sets the "missing" variant.

Page 154

COM/OLE description
A brief description of COM/OLE library. This library also contains the support of the VARIANT type, used for data transmitting
from/to COM objects. Variables of the oleobj type are used for w orking w ith the COM objects; furthermore, each variable of this
type has one appropriate COM object. A COM objects method is called w ith the help of the ~ late binding operation. There are tw o
w ays of binding a COM object w ith a variable , as follow s:

1. The oleobj.createobj method is used for creating a new COM object:

oleobj excapp

excapp.createobj("Excel.Application", "")

2. Binding a variable w ith the existing COM object (child) is returned by another COM object method call:

oleobj workbooks

workbooks = excapp~WorkBooks

The oleobj object can maintain the follow ing kinds of late binding:

 elementary method call excapp~Quit, w ith/w ithout parameters;
 set value excapp~Cells(3, 2) = "Hello World!";
 get value vis = uint(excapp~Visible);
 call chain excapp~WorkBooks~Add, equals the follow ing expressions
oleobj workbooks

workbooks = excapp~WorkBooks

workbooks~Add

The method call can return only the VARIANT type, and the appropriate assignment operators and type cast operators are used to
convert data to basic Gentee types. Parameters of the COM objects methods call as w ell as the assigned values are automatically
converted to the appropriate VARIANT types. The follow ing Gentee types can be used - uint, int, ulong, long, float, double,
str, VARIANT.

Use the oleobj.release method in order to release the COM object; otherw ise, the COM object is released w hen the variable is
deleted; also the object is released w hen the variable is bound w ith another COM object. Have a look at the example of using the
COM object

include : $"...\olecom.g"

func ole_example

{

 oleobj excapp

 excapp.createobj("Excel.Application", "")

 excapp.flgs = $FOLEOBJ_INT

 excapp~Visible = 1

 excapp~WorkBooks~Add

 excapp~Cells(3, 2) = "Hello World!"

 }

The oleobj object has properties, as follow s:

 uint flgs are flags. Flags value can be set or obtained; the property can contain the $FOLEOBJ_INT flag, i.e. w hen transmitting
data to the COM object the unsigned Gentee type of uint is automatically converted to the signed type of VARIANT(VT_I4)

 uint errfunc is an error handling function. A function address can be assigned to this property, so using the COM object this
function w ill be called as long as an error occurs; furthermore, this function must have a parameter of the uint type, that
contains an error code.

All child objects automatically inherit the flgs property as w ell as the errfunc property.

Related links
 COM/OLE

Page 155

VARIANT
VARIANT type. VARIANT is a universal type that is used for storing various data and it enables different programs to exchange
data properly. This type represents a structure consisted of tw o main fields: the first field is a type of the stored value, the second
field is the stored value or the pointer to a storage area. The VARIANT type is defined as follow s:

type VARIANT {

 ushort vt

 ushort wReserved1

 ushort wReserved2

 ushort wReserved3

 ulong val

 }

vt is a type code of the contained value (type constants VT_*: $VT_UI4, $VT_I4, $VT_BSTR ...);
val is a field used for storing values

The library provides only some of the operations of the VARIANT type, how ever, you can use the fields of the given structure. The
example illustrates creation of the VARIANT(VT_BOOL) variable:

VARIANT bool

....

bool.clear()

bool.vt = $VT_BOOL

(&bool.val)->uint = 0xffff// 0xffff - VARIANT_TRUE

This example show s VARIANT operations

uint val

str res

oleobj ActWorkSheet

VARIANT vval

....

vval = int(100) //VARIANT(VT_I4) is being created

excapp~Cells(1,1) = vval //equals excapp~Cells(1,1) = 100

vval = "Test string" //VARIANT(VT_BSTR) is being created

excapp~Cells(2,1) = vval //equals excapp~Cells(1,1) = "Test string"

val = uint(excapp~Cells(1,1)~Value) //VARIANT(VT_I4) is converted to uint

res = excapp~Cells(2,1)~Value //VARIANT(VT_BSTR) is converted to str

ActWorkSheet = excapp~ActiveWorkSheet //VARIANT(VT_DISPATCH) is converted

 to oleobj

Related links
 COM/OLE

Page 156

type = VARIANT
 operator str = (str left, VARIANT right)
 operator oleobj = (oleobj left, VARIANT right)

Assign operation. str = VARIANT(VT_BSTR).

operator str = (

 str left,

 VARIANT right

)

Return value
The result string.

oleobj = VARIANT
Assign operation. oleobj = VARIANT(VT_DISPATCH).

operator oleobj = (

 oleobj left,

 VARIANT right

)

Return value
The result oleobj.

Related links
 COM/OLE

Page 157

VARIANT = type
 operator VARIANT = (VARIANT left, uint right)
 operator VARIANT = (VARIANT left, int right)
 operator VARIANT = (VARIANT left, float right)
 operator VARIANT = (VARIANT left, double right)
 operator VARIANT = (VARIANT left, long right)
 operator VARIANT = (VARIANT left, ulong right)
 operator VARIANT = (VARIANT left, str right)
 operator VARIANT = (VARIANT left, VARIANT right)

Assign operation. VARIANT = uint.

operator VARIANT = (

 VARIANT left,

 uint right

)

Return value
VARIANT(VT_UI4).

VARIANT = int
Assign operation: VARIANT = int.

operator VARIANT = (

 VARIANT left,

 int right

)

Return value
VARIANT(VT_I4).

VARIANT = float
Assign operation: VARIANT = float.

operator VARIANT = (

 VARIANT left,

 float right

)

Return value
VARIANT(VT_R4).

VARIANT = double
Assign operation: VARIANT = double .

operator VARIANT = (

 VARIANT left,

 double right

)

Return value
VARIANT(VT_R8).

VARIANT = long
Assign operation: VARIANT = long.

operator VARIANT = (

 VARIANT left,

 long right

)

Return value
VARIANT(VT_I8).

VARIANT = ulong
Assign operation: VARIANT = ulong.

operator VARIANT = (

Page 158

 VARIANT left,

 ulong right

)

Return value
VARIANT(VT_UI8).

VARIANT = str
Assign operation: VARIANT = str.

operator VARIANT = (

 VARIANT left,

 str right

)

Return value
VARIANT(VT_BSTR).

VARIANT = VARIANT
Assign operation: VARIANT = VARIANT.

operator VARIANT = (

 VARIANT left,

 VARIANT right

)

Return value
VARIANT.

Related links
 COM/OLE

Page 159

type(VARIANT)
 method str VARIANT.str <result>
 method ulong VARIANT.ulong
 method long VARIANT.long
 method uint VARIANT.uint
 method int VARIANT.int
 method float VARIANT.float
 method double VARIANT.double

Conversion. str(VARIANT).

method str VARIANT.str <result>

Return value
The result str value.

VARIANT.ulong
Conversion: ulong(VARIANT).

method ulong VARIANT.ulong

Return value
The result ulong value.

VARIANT.long
Conversion: long(VARIANT).

method long VARIANT.long

Return value
The result long value.

VARIANT.uint
Conversion: uint(VARIANT).

method uint VARIANT.uint

Return value
The result uint value.

VARIANT.int
Conversion: int(VARIANT).

method int VARIANT.int

Return value
The result int value.

VARIANT.float
Conversion: float(VARIANT).

method float VARIANT.float

Return value
The result float value.

VARIANT.double
Conversion: double(VARIANT).

method double VARIANT.double

Return value
The result double value.

Related links
 COM/OLE

Page 160

oleobj.createobj
The method creates a new COM object. Example:

oleobj excapp

excapp.createobj("Excel.Application", "")

//is equal to excapp.createobj("{00024500-0000-0000-C000-000000000046}", "")

|

excapp.flgs = $FOLEOBJ_INT

excapp~Visible = 1

method uint oleobj.createobj (

 str name,

 str mashine

)

Parameters
name An object name, or the string representation of an object identifier - "{...}".

mashine A computer name w here the required object is created; if the current string is empty, the object is created in the
current computer.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 COM/OLE

Page 161

oleobj.getres
Result of the last operation. This method is applied for getting an error code or a w arning; the code is the C type of HRESULT.

method uint oleobj.getres()

Return value
Returns the HRESULT code of the last COM object operation.

Related links
 COM/OLE

Page 162

oleobj.iserr
Enables to define w hether or not an error occurs w hile w orking w ith a COM object.

method uint oleobj.iserr()

Return value
Returns the HRESULT code of the last COM object operation.

Related links
 COM/OLE

Page 163

oleobj.release
Releasing the COM object. The method deletes the bond betw een the variable and the COM object and releases the COM object.

method oleobj.release()

Related links
 COM/OLE

Page 164

variant.arrcreate
Creating the SafeArray array. This method creates the SafeArray array in the variable of the VARIANT type. VARIANT is an
element of the array. Values can be assigned to the array elements using the variant.arrfromg method. An element of the array
can be obtained w ith the help of the variant.arrgetptr method.

The example uses SafeArray

VARIANT v

//An array with 3 lines and 2 columns is being created

v.arrcreate(%{3,0,2,0})

v.arrfromg(%{0,0, 0.1234f})

v.arrfromg(%{0,1, int(100)})

v.arrfromg(%{2,1, "Test" })

...

//The array is being transmitted to the COM object

excapp~Range(excapp~Cells(1, 1), excapp~Cells(3, 2)) = v

SafeArray allow s you to group data, that makes data exchange w ith the COM object faster.

method uint VARIANT.arrcreate (

 collection bounds

)

Parameters
bounds The collection that contains array parameters. Tw o numbers are specified for each array dimension: the first number

- an element quantity, the second number - a sequence number of the first element in the dimension.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 COM/OLE

Page 165

variant.arrfromg
Assigning a value to an element of the SafeArray array. Example

v.arrfromg(%{0,0, 0.1234f})

v.arrfromg(%{0,1, int(100)})

v.arrfromg(%{2,1, "Test" })

method uint VARIANT.arrfromg (

 collection item

)

Parameters
item The collection that contains "coordinates" of an element; the last element of the collection - the assigned value.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 COM/OLE

Page 166

variant.arrgetptr
Obtaining a pointer to an element of the SafeArray array.

method uint VARIANT.arrgetptr (

 collection item

)

Parameters
item The collection that contains "coordinates" of an element.

Return value
The method returns address of an array element, if error occurs it returns zero.

Related links
 COM/OLE

Page 167

variant.clear
Clears the variable contents, the storage area is released if necessary. The VARIANT type is equal to VT_EMPTY. This method is
automatically called before a new value has been set .

method VARIANT.clear()

Related links
 COM/OLE

Page 168

variant.ismissing
Checks if the variant is "missing" (optional) parameter of the method.

method uint VARIANT.ismissing()

Return value
The method returns 1, if the VARIANT variable is "missing".

Related links
 COM/OLE

Page 169

variant.isnull
Enables to define w hether or not a variable is NULL. This method enables you to define w hether or not a variable is NULL - the
VARIANT(VT_NULL) type.

method uint VARIANT.isnull()

Return value
The method returns 1, if the VARIANT variable is of the VT_NULL type, otherw ise, it returns zero.

Related links
 COM/OLE

Page 170

variant.setmissing
Sets the "missing" variant. The method sets the variant variable as "missing" (optional) parameter.

method VARIANT.setmissing()

Related links
 COM/OLE

Page 171

Console
Console library. Functions for w orking w ith the console.

congetch Displaying text and w aiting for a keystroke.

congetstr Getting a string after text is displayed.

conread Get a string entered by the user.

conrequest Displaying a multiple choice request on the console.

conyesno Displaying a question on the console.

Page 172

congetch
Displaying text and w aiting for a keystroke.

func uint congetch (

 str output

)

Parameters
output Message text.

Return value
The function returns the value of the pressed key.

Related links
 Console

Page 173

congetstr
Getting a string after text is displayed. Get the string entered by the user w ith some text displayed before that.

func str congetstr (

 str output,

 str input

)

Parameters
output Text for displaying.

input The variable of the str type for getting data.

Return value
Returns the parameter input.

Related links
 Console

Page 174

conread
Get a string entered by the user.

func str conread (

 str input

)

Parameters
input The variable of the str type for getting data.

Return value
Returns the parameter input.

Related links
 Console

Page 175

conrequest
Displaying a multiple choice request on the console.

func uint conrequest (

 str output,

 str answer

)

Parameters
output Request text.

answer Enumerating possible answ er letters. Answ er variants are separated by '|'. For example, "Nn|Yy"

Return value
The function returns the number of the selected variant beginning from 0.

Related links
 Console

Page 176

conyesno
Displaying a question on the console.

func uint conyesno (

 str output

)

Parameters
output Question text.

Return value
The function returns 1 if the answ er is 'yes' and 0 otherw ise.

Related links
 Console

Page 177

CSV
Working w ith CSV data. Variables of the csv type allow you to w ork w ith data in the csv format.

string1_1,"string1_2",string1_3
string2_1,"string2_2",string2_3

The csv type is inherited from str type. So, you can use string methods and operators. For using this library, it is required to
specify the file csv.g (from lib\csv subfolder) w ith include command.
include : $"...\gentee\lib\csv\csv.g"

 Operators
 Methods

Operators

foreach var,csv Foreach operator.
Methods

csv.append Adds a string to a csv object.

csv.clear Clear the csv data object.

csv.read Read data from a csv file.

csv.settings Set separating and limiting characters for csv data.

csv.w rite Writing csv data to a file.

Page 178

foreach var,csv
Foreach operator. Looking through all items w ith the help of the foreach operator. An element in an object of the csv type is an
array of strings arrstr. Each string is split into separate elements by the separator and these elements are w ritten into the passed
array.

csv mycsv

uint i k

...

foreach item, mycsv

{

 print("Item: \(++i)\n")

 fornum k = 0, *item

 {

 print("\(item[k])\n")

 }

}

foreach variable,csv {...}

Related links
 CSV

Page 179

csv.append
Adds a string to a csv object.

method csv.append (

 arrstr arrs

)

Parameters
arrs The array of strings containing the elements of a string. All strings w ill be combined into one record and added to the csv

object.

Related links
 CSV

Page 180

csv.clear
Clear the csv data object.

method uint csv.clear()

Related links
 CSV

Page 181

csv.read
Read data from a csv file.

method uint csv.read (

 str filename

)

Parameters
filename Filename.

Return value
The size of the read data.

Related links
 CSV

Page 182

csv.settings
Set separating and limiting characters for csv data.

method csv.settings (

 uint separ,

 uint open,

 uint close

)

Parameters
separ Separator. Comma by default.

open The left limiting character. Double quotes by default.

close The right limiting character. Double quotes by default.

Related links
 CSV

Page 183

csv.write
Writing csv data to a file.

method uint csv.write (

 str filename

)

Parameters
filename The name of the file for w riting. If the file already exists, it w ill be overw ritten.

Return value
The size of the w ritten data.

Related links
 CSV

Page 184

Date & Time
Functions for w orking w ith date and time.

 Operators
 Functions
 Methods
 File time functions and operators
 Types

Operators

datetim e = datetim e Copying datatime structure.

datetim e += uint Adding days to a date.

datetim e -= uint Subtracting days from a date.

datetim e - datetim e Difference betw een tw o dates as days and time.

datetim e + datetim e Adding tw o dates as days and time.

datetim e == datetim e Comparison operations.

datetim e < datetim e Comparison operation.

datetim e > datetim e Comparison operation.
Functions

abbrnam eofday Get the short name of a w eekday in the user's language.

days The number of days betw een tw o dates.

daysinm onth The number of days in a month.

firstdayofw eek Get the first day of a w eek for the user's locale.

getdateform at Get date in the specified format.

getdatetim e Getting date and time as strings.

gettim eform at Get time in the specified format.

isleapyear Leap year check.

nam eofm onth Get the name of a month in the user's language.
Methods

datetim e.dayofw eek Get the w eekday.

datetim e.dayofyear Get the number of a particular day in the year.

datetim e.from str Convert string like SSMMHHDDMMYYYY to datetime structure.

datetim e.gettim e Getting the current date and time.

datetim e.getsystim e Getting the current system date and time.

datetim e.norm alize Normalizing a datetime structure.

datetim e.setdate Specifying a date.

datetim e.tostr Convert a datetime structure to string like SSMMHHDDMMYYYY.
File time functions and operators

filetim e = filetim e Copying filetime structure.

filetim e == filetim e Comparison operations.

filetim e < filetim e Comparison operation.

Page 185

filetim e > filetim e Comparison operation.

datetim etoftim e Converting date from datetime into filetime.

ftim etodatetim e Converting date from filetime into datetime.

getfiledatetim e Getting date and time as strings.
Types

datetim e The datetime structure.

filetim e The filetime structure.

Page 186

datetime = datetime
Copying datatime structure.

operator datetime = (

 datetime left,

 datetime right

)

Return value
The result datetime.

Related links
 Date & Time

Page 187

datetime += uint
Adding days to a date.

operator datetime += (

 datetime left,

 uint next

)

Return value
The result datetime.

Related links
 Date & Time

Page 188

datetime -= uint
Subtracting days from a date.

operator datetime -= (

 datetime left,

 uint next

)

Return value
The result datetime.

Related links
 Date & Time

Page 189

datetime - datetime
 operator datetime -<result>(datetime left, datetime right)
 operator datetime -=(datetime left, datetime right)

Difference betw een tw o dates as days and time. All values are positive numbers.

operator datetime -<result> (

 datetime left,

 datetime right

)

Return value
The result datetime.

datetime -= datetime
Difference betw een tw o dates as days and time. All values are positive numbers.

operator datetime -= (

 datetime left,

 datetime right

)

Return value
The result datetime.

Related links
 Date & Time

Page 190

datetime + datetime
 operator datetime +<result>(datetime left, datetime right)
 operator datetime +=(datetime left, datetime right)

Adding tw o dates as days and time. All values are positive numbers.

operator datetime +<result> (

 datetime left,

 datetime right

)

Return value
The result datetime.

datetime += datetime
Adding one datetime to another datetime structure.

operator datetime += (

 datetime left,

 datetime right

)

Return value
The result datetime.

Related links
 Date & Time

Page 191

datetime == datetime
 operator uint ==(datetime left, datetime right)
 operator uint !=(datetime left, datetime right)

Comparison operations.

operator uint == (

 datetime left,

 datetime right

)

Return value
Returns 1 if the datetimes are equal. Otherw ise, it returns 0.

datetime != datetime
Comparison operation.

operator uint != (

 datetime left,

 datetime right

)

Return value
Returns 0 if the datetimes are equal. Otherw ise, it returns 1.

Related links
 Date & Time

Page 192

datetime < datetime
 operator uint <(datetime left, datetime right)
 operator uint <=(datetime left, datetime right)

Comparison operation.

operator uint < (

 datetime left,

 datetime right

)

Return value
Returns 1 if the first datetime is less than the second one. Otherw ise, it returns 0.

datetime <= datetime
Comparison operation.

operator uint <= (

 datetime left,

 datetime right

)

Return value
Returns 1 if the first datetime is less or equal the second one. Otherw ise, it returns 0.

Related links
 Date & Time

Page 193

datetime > datetime
 operator uint >(datetime left, datetime right)
 operator uint >=(datetime left, datetime right)

Comparison operation.

operator uint > (

 datetime left,

 datetime right

)

Return value
Returns 1 if the first datetime is greater than the second one. Otherw ise, it returns 0.

datetime >= datetime
Comparison operation.

operator uint >= (

 datetime left,

 datetime right

)

Return value
Returns 1 if the first datetime is greater or equal the second one. Otherw ise, it returns 0.

Related links
 Date & Time

Page 194

abbrnameofday
Get the short name of a w eekday in the user's language.

func str abbrnameofday (

 str ret,

 uint dayofweek

)

Parameters
ret The string for getting the result.

dayofweek The number of the w eekday. 0 is Sunday, 1 is Monday...

Return value
Returns the parameter ret.

Related links
 Date & Time

Page 195

days
The number of days betw een tw o dates.

func int days (

 datetime left,

 datetime right

)

Parameters
left The first date for comparison.

right The second date for comparison.

Return value
Returns the number of days betw een tw o dates. If the first date is greater than the second one, the return value w ill be negative.

Related links
 Date & Time

Page 196

daysinmonth
The number of days in a month. Leap years are taken into account for February.

func uint daysinmonth (

 ushort year,

 ushort month

)

Parameters
year Year.

month Month.

Return value
Returns the number of days in the month.

Related links
 Date & Time

Page 197

firstdayofweek
Get the first day of a w eek for the user's locale.

func uint firstdayofweek()

Return value
Returns the number of the w eekday. 0 is Sunday, 1 is Monday...

Related links
 Date & Time

Page 198

getdateformat
Get date in the specified format.

func str getdateformat (

 datetime systime,

 str format,

 str date

)

Parameters
systime The variable containing date.

format Date format. It can contain the follow ing values:

dd Day as a number.

ddd Weekday as an abbriviation.

dddd The full name of a w eekday.

MM Month as a number.

MMM Month as an abbreviation.

MMMM The full name of a month.

yy The last tow digits in a year.

yyyy Year.
date The string for getting the date.

Return value
Returns the parameter date .

Related links
 Date & Time

Page 199

getdatetime
Getting date and time as strings. Get date and time in the current Window s string format.

func getdatetime (

 datetime systime,

 str date,

 str time

)

Parameters
systime Datetime structure.

date The string for getting the date. It can be 0->str.

time The string for getting time. It can be 0->str.

Related links
 Date & Time

Page 200

gettimeformat
Get time in the specified format.

func str gettimeformat (

 datetime systime,

 str format,

 str time

)

Parameters
systime The variable containing time.

format Time format. It can contain the follow ing values:

hh Hours - 12-hour format.

HH Hours -24-hour format.

m m Minutes.

ss Seconds.

tt Time marker, such as AM or PM.
time The string for getting time.

Return value
Returns the parameter tim e .

Related links
 Date & Time

Page 201

isleapyear
Leap year check.

func uint isleapyear (

 ushort year

)

Parameters
year The year being checked.

Return value
Returns 1 if the year is a leap one and 0 otherw ise.

Related links
 Date & Time

Page 202

nameofmonth
Get the name of a month in the user's language.

func str nameofmonth (

 str ret,

 uint month

)

Parameters
ret Result string.

month The number of the month from 1.

Return value
Returns the parameter ret.

Related links
 Date & Time

Page 203

datetime.dayofweek
Get the w eekday.

method uint datetime.dayofweek

Return value
Returns the w eekday. 0 is Sunday, 1 is Monday...

Related links
 Date & Time

Page 204

datetime.dayofyear
Get the number of a particular day in the year.

method uint datetime.dayofyear

Return value
Returns the number of a particular day in the year.

Related links
 Date & Time

Page 205

datetime.fromstr
Convert string like SSMMHHDDMMYYYY to datetime structure.

method datetime datetime.fromstr (

 str data

)

Parameters
data The string to be converted.

Return value
Returns the object w hich method has been called.

Related links
 Date & Time

Page 206

datetime.gettime
Getting the current date and time. The w eekday is set automatically.

method datetime datetime.gettime()

Return value
Returns the object w hich method has been called.

Related links
 Date & Time

Page 207

datetime.getsystime
Getting the current system date and time.

method datetime datetime.getsystime()

Return value
Returns the object w hich method has been called.

Related links
 Date & Time

Page 208

datetime.normalize
Normalizing a datetime structure. For example, if the hour parameter is 32 hours, it w ill equal 8 and the day parameter is increased
by 1.

method datetime datetime.normalize()

Return value
Returns the object w hich method has been called.

Related links
 Date & Time

Page 209

datetime.setdate
Specifying a date. The w eekday is set automatically.

method datetime datetime.setdate (

 uint day,

 uint month,

 uint year

)

Parameters
day Day.

month Month.

year Year.

Return value
Returns the object w hich method has been called.

Related links
 Date & Time

Page 210

datetime.tostr
Convert a datetime structure to string like SSMMHHDDMMYYYY.

method str datetime.tostr (

 str ret

)

Parameters
ret The result string the datetime to be converted to.

Return value
Returns the parameter ret.

Related links
 Date & Time

Page 211

filetime = filetime
Copying filetime structure.

operator filetime = (

 filetime left,

 filetime right

)

Return value
The result filetime.

Related links
 Date & Time

Page 212

filetime == filetime
 operator uint ==(filetime left, filetime right)
 operator uint !=(filetime left, filetime right)

Comparison operations.

operator uint == (

 filetime left,

 filetime right

)

Return value
Returns 1 if the filetimes are equal. Otherw ise, it returns 0.

filetime != filetime
Comparison operation.

operator uint != (

 filetime left,

 filetime right

)

Return value
Returns 0 if the filetimes are equal. Otherw ise, it returns 1.

Related links
 Date & Time

Page 213

filetime < filetime
 operator uint <(filetime left, filetime right)
 operator uint <=(filetime left, filetime right)

Comparison operation.

operator uint < (

 filetime left,

 filetime right

)

Return value
Returns 1 if the first filetime is less than the second one. Otherw ise, it returns 0.

filetime <= filetime
Comparison operation.

operator uint <= (

 filetime left,

 filetime right

)

Return value
Returns 1 if the first filetime is less or equal the second one. Otherw ise, it returns 0.

Related links
 Date & Time

Page 214

filetime > filetime
 operator uint >(filetime left, filetime right)
 operator uint >=(filetime left, filetime right)

Comparison operation.

operator uint > (

 filetime left,

 filetime right

)

Return value
Returns 1 if the first filetime is greater than the second one. Otherw ise, it returns 0.

filetime >= filetime
Comparison operation.

operator uint >= (

 filetime left,

 filetime right

)

Return value
Returns 1 if the first filetime is greater or equal the second one. Otherw ise, it returns 0.

Related links
 Date & Time

Page 215

datetimetoftime
Converting date from datetime into filetime.

func uint datetimetoftime (

 datetime dt,

 filetime ft

)

Parameters
dt Datetime structure.

ft The variable of the filetime type for getting the result.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Date & Time

Page 216

ftimetodatetime
Converting date from filetime into datetime.

func datetime ftimetodatetime (

 filetime ft,

 datetime dt,

 uint local

)

Parameters
ft A structure of the filetime type. Can be taken from the finfo structure.

dt A datetime structure for getting the result.

local Specify 1 if you need to take the local time into account.

Return value
Returns the parameter dt.

Related links
 Date & Time

Page 217

getfiledatetime
Getting date and time as strings. Get the data and time of the last file modification as strings.

func getfiledatetime (

 filetime ftime,

 str date,

 str time

)

Parameters
ftime A structure of the filetime type. Can be taken from the finfo structure.

date The string for w riting date. It can be 0->str.

time The string for w riting time. It can be 0->str.

Related links
 Date & Time

Page 218

datetime
The datetime structure. An object of the datetime type is used to w ork w ith time. This type can contain information about date and
time.

type datetime

{

 ushort year

 ushort month

 ushort dayofweek

 ushort day

 ushort hour

 ushort minute

 ushort second

 ushort msec

}

Members
year Year.

month Month.

dayofweek Weekday. Counted from 0. 0 is Sunday, 1 is Monday...

day Day.

hour Hours.

minute Minutes.

second Seconds.

msec Milliseconds.

Related links
 Date & Time

Page 219

filetime
The filetime structure. The filetime type is used to w ork w ith time of files.

type filetime

{

 uint lowdtime

 uint highdtime

}

Members
lowdtime Low uint value.

highdtime High uint value.

Related links
 Date & Time

Page 220

Dbf
This library is used to w ork w ith dbf files. The formats dBase III and dBase IV are supported. To be able to w ork, you should
describe a variable of the dbf type. For using this library, it is required to specify the file dbf.g (from Lib subfolder) w ith include
command.

include : $"...\gentee\lib\dbf\dbf.g"

 Operators
 Methods
 Field methods

Operators

* dbf Get the number of records in the database.

foreach var,dbf Foreach operator.
Methods

dbf.append Adding a record.

dbf.bof Determine is the current record is the first one.

dbf.bottom Move to the last record.

dbf.close Close a database.

dbf.create Create a dbf file and open it.

dbf.del Set/clear the deletion mark for the current record.

dbf.em pty Creating an empty copy.

dbf.eof Determine is the current record is in the database.

dbf.geterror Getting an error code.

dbf.go Move to the record w ith the specified number.

dbf.isdel Getting the record deletion mark.

dbf.open Open a database (a dbf file).

dbf.pack Pack a database.

dbf.recno Getting the number of the current record.

dbf.skip Moving to another record.

dbf.top Move to the first record.
Field methods

dbf.f_count Number of fields.

dbf.f_date Getting a date.

dbf.f_decim al Getting the size of the fractional part in a numerical field.

dbf.f_double Getting a numerical value.

dbf.f_find Getting the number of a field by its name.

dbf.f_int Getting an integer value.

dbf.f_logic Getting a logical value.

dbf.f_m em o Get the value of a memo field.

dbf.f_nam e Get the name of the specified field.

dbf.f_offset Get the offset of the field.

Page 221

dbf.f_ptr Pointer to data.

dbf.f_str Getting a value.

dbf.f_type Get the field type.

dbf.f_w idth Get the w idth of the specified field.

dbf.fw _date Writing a date.

dbf.fw _double Writing a numerical value.

dbf.fw _int Writing an integer value.

dbf.fw _logic Writing a logical value.

dbf.fw _m em o Writing a value into a memo field.

dbf.fw _str Writing a value.

Page 222

* dbf
Get the number of records in the database.

operator uint * (

 dbf dbase

)

Return value
The number of records.

Related links
 Dbf

Page 223

foreach var,dbf
Foreach operator. You can use foreach operator to look over all records of the database. Variable is a number of the current
record.

foreach variable,dbf {...}

Related links
 Dbf

Page 224

dbf.append
Adding a record. The method adds a record to a database.

method uint dbf.append()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 225

dbf.bof
Determine is the current record is the first one.

method uint dbf.bof()

Return value
1 is returned if the current record is the first one.

Related links
 Dbf

Page 226

dbf.bottom
Move to the last record.

method uint dbf.bottom()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 227

dbf.close
Close a database.

method dbf.close()

Related links
 Dbf

Page 228

dbf.create
Create a dbf file and open it.

method uint dbf.create (

 str filename,

 str fields,

 uint ver

)

Parameters
filena

me

The name of the dbf file being created.

fields The description of database fields. The line containing the description of fields separated by a line break or ';'
Field name,Field type,Width,Fractional part length for numbers The name of a field cannot be longer than 10
characters. Possible type fields:

$DBFF_CHAR String.

$DBFF_DATE Date.

$DBFF_LOGIC Logical.

$DBFF_NUMERIC Integer.

$DBFF_FLOAT Fraction.

$DBFF_MEMO Memo field.
ver Version. 0 for dBase III or 1 for dBase IV.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 229

dbf.del
Set/clear the deletion mark for the current record.

method uint dbf.del

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 230

dbf.empty
Creating an empty copy. The method creates the same, but empty database.

method uint dbf.empty (

 str outfile

)

Parameters
filename The full name of the dbf file being created.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 231

dbf.eof
Determine is the current record is in the database.

method uint dbf.eof (

 fordata fd

)

Parameters
fd This parameter is used in forech operator. Specify 0->fordata.

Return value
Returns 1 if the current record is not defined/found and 0 otherw ise.

Related links
 Dbf

Page 232

dbf.geterror
Getting an error code. Get the error code in case some method is finished unsuccessfully.

method uint dbf.geterror()

Return value
The code of the last error is returned.

$ERRDBF_OPEN Cannot open dbf file.

$ERRDBF_READ Cannot read dbf file.

$ERRDBF_POS File position error.

$ERRDBF_EOF There is not the current record.

$ERRDBF_WRITE Cannot w rite dbf file.

$ERRDBF_FOVER The length of the string being w ritten is greater than the size of the field.

$ERRDBF_TYPE Incompatible field type.

$ERRDBT_OPEN Cannot open dbt file.

$ERRDBT_READ Cannot read dbt file.

$ERRDBT_POS An error of positioning in the dbt file.

$ERRDBT_WRITE Cannot w rite dbt file.
Related links

 Dbf

Page 233

dbf.go
Move to the record w ith the specified number.

method uint dbf.go (

 uint num

)

Parameters
num The required record number starting from 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 234

dbf.isdel
Getting the record deletion mark. Determine if the current record is marked as deleted.

method uint dbf.isdel()

Return value
1 is returned if the current record is marked as deleted.

Related links
 Dbf

Page 235

dbf.open
Open a database (a dbf file).

method uint dbf.open (

 str name

)

Parameters
name The name of the dbf file being opened.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 236

dbf.pack
Pack a database. The database is copied into a new file excluding records marked as deleted.

method uint dbf.pack (

 str outfile

)

Parameters
outfile The name of the new dbf file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 237

dbf.recno
Getting the number of the current record.

method uint dbf.recno()

Return value
The number of the current record or 0 if the record is not defined.

Related links
 Dbf

Page 238

dbf.skip
Moving to another record. Move forw ard or backw ard for the specified number of records.

method uint dbf.skip (

 int step

)

Parameters
step The step of moving. If it is less than zero, the move w ill be tow ard the beginning of the database.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 239

dbf.top
Move to the first record.

method uint dbf.top()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 240

dbf.f_count
Number of fields.

method uint dbf.f_count()

Return value
Returns the number of fields.

Related links
 Dbf

Page 241

dbf.f_date
 method datetime dbf.f_date(datetime dt, uint num)
 method str dbf.f_date(str val, uint num)

Getting a date. Getting the date from the specified field of the current record into the structure datetime.

method datetime dbf.f_date (

 datetime dt,

 uint num

)

Parameters
dt The structure for getting the date.

num Field number beginning w ith 1.

Return value
Returns the parameter dt.

dbf.f_date
Getting the date from the specified field of the current record as a string.

method str dbf.f_date (

 str val,

 uint num

)

Parameters
val The string for getting the date.

num Field number beginning w ith 1.

Return value
Returns the parameter val.

Related links
 Dbf

Page 242

dbf.f_decimal
Getting the size of the fractional part in a numerical field.

method uint dbf.f_decimal (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
The size of the fractional part.

Related links
 Dbf

Page 243

dbf.f_double
Getting a numerical value. Get a numerical value of the double type from the specified field of the current record.

method double dbf.f_double (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
A value of the double type.

Related links
 Dbf

Page 244

dbf.f_find
Getting the number of a field by its name.

method uint dbf.f_find (

 str name

)

Parameters
name The name of the field.

Return value
The number of the field w ith the specified name or 0 in case of an error.

Related links
 Dbf

Page 245

dbf.f_int
Getting an integer value. Get a numerical value of the int type from the specified field of the current record.

method int dbf.f_int (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
A number of the int type is returned.

Related links
 Dbf

Page 246

dbf.f_logic
Getting a logical value. Get the value of the logical field from the current record.

method uint dbf.f_logic (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
Returns the value of the logical field.

$DBF_LFALSE The value of the logical field is FALSE.

$DBF_LTRUE The value of the logical field is TRUE.

$DBF_LUNKNOWN The value of the logical field is undefined.
Related links

 Dbf

Page 247

dbf.f_memo
Get the value of a memo field. Get the value of the memo field from the current record.

method uint dbf.f_memo (

 str val,

 uint num

)

Parameters
val The string for w riting the value.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 248

dbf.f_name
Get the name of the specified field.

method str dbf.f_name (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
Returns the name of the specified field.

Related links
 Dbf

Page 249

dbf.f_offset
Get the offset of the field.

method uint dbf.f_offset (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
Returns the offset of this field.

Related links
 Dbf

Page 250

dbf.f_ptr
Pointer to data. Get the pointer to the contents of this field from the current record.

method uint dbf.f_ptr (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
Returns the pointer to this field.

Related links
 Dbf

Page 251

dbf.f_str
Getting a value. Get the value of the field from the current record as a string.

method str dbf.f_str (

 str val,

 uint num

)

Parameters
val The string for getting the value.

num Field number beginning w ith 1.

Return value
Returns the parameter val.

Related links
 Dbf

Page 252

dbf.f_type
Get the field type.

method uint dbf.f_type (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
Returns the type of this field. It can be one of the follow ing values.

$DBFF_CHAR String.

$DBFF_DATE Date.

$DBFF_LOGIC Logical.

$DBFF_NUMERIC Integer.

$DBFF_FLOAT Fraction.

$DBFF_MEMO Memo field.
Related links

 Dbf

Page 253

dbf.f_width
Get the w idth of the specified field.

method uint dbf.f_width (

 uint num

)

Parameters
num Field number beginning w ith 1.

Return value
Returns the w idth of the field.

Related links
 Dbf

Page 254

dbf.fw_date
Writing a date. Write a date into the specified field of the current record.

method uint dbf.fw_date (

 datetime dt,

 uint num

)

Parameters
dt The structure datetime containing the date.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 255

dbf.fw_double
Writing a numerical value. Write a numerical value into the specified field of the current record.

method uint dbf.fw_double (

 double dval,

 uint num

)

Parameters
dval The number being w ritten.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 256

dbf.fw_int
Writing an integer value. Write a value of the int type into the specified field of the current record.

method uint dbf.fw_int (

 int ival,

 uint num

)

Parameters
ival The number being w ritten.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 257

dbf.fw_logic
Writing a logical value. Write a logical value into the specified field of the current record.

method uint dbf.fw_logic (

 uint val,

 uint num

)

Parameters
val Number 1 or 0.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 258

dbf.fw_memo
Writing a value into a memo field. Write a value into the specified memo field of the current record.

method uint dbf.fw_memo (

 str val,

 uint num

)

Parameters
val The string being w ritten.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 259

dbf.fw_str
Writing a value. Write a value into the specified field of the current record.

method uint dbf.fw_str (

 str val,

 uint num

)

Parameters
val The string being w ritten.

num Field number beginning w ith 1.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Dbf

Page 260

Files
File system functions.

 Methods
 Functions
 Search and fileinfo functions
 Related Methods

Methods

file.close Close a file.

file.getsize Get the size of the file.

file.gettim e Get the time w hen the file w as last modified.

file.open Open a file.

file.read Reading a file.

file.setpos Set the current position in the file.

file.settim e Set time for a file.

file.w rite Writing to a file.
Functions

copyfile Copy a file.

copyfiles Copying files and directories by mask.

createdir Create a directory.

deletedir Delete a directory.

deletefile Delete a file.

delfiles Deleting files and directories by mask.

direxist Checking if a directory exists.

fileexist Checking if a file exists.

getcurdir Getting the current directory.

getdrives Get the names of available disks.

getdrivetype Get the type of a disk.

getfileattrib Getting file attributes.

getm odulenam e Get the file name of the currently running application.

getm odulepath Get the path to the running EXE file.

gettem pdir Get the temporary directory of the application.

isequalfiles Check if files are equal.

m ovefile Rename, move a file or a directory.

setattribnorm al Setting the attribute $FILE_ATTRIBUTE_NORMAL.

setcurdir Setting the current directory.

setfileattrib Set file attributes.

verifypath Verifying a path and creating all absent directories.
Search and fileinfo functions

Page 261

finfo File information structure.

ffind File search structure.

foreach var,ffind Foreach operator.

ffind.init Initializing file search.

getfileinfo Get information about a file or directory.
Related Methods

arrstr.read Read a multi-line text file to array of strings.

arrstr.w rite Write an array of strings to a multi-line text file.

buf.read Reading from a file.

buf.w rite Writing to a file.

buf.w riteappend Appending data to a file.

str.read Read a string from a file.

str.w rite Writing a string to a file.

str.w riteappend Appending string to a file.

Page 262

file.close
Close a file.

method uint file.close()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 263

file.getsize
Get the size of the file.

method uint file.getsize()

Return value
The size of the file less 4GB.

Related links
 Files

Page 264

file.gettime
Get the time w hen the file w as last modified.

method uint file.gettime (

 filetime ft

)

Parameters
ft The variable for getting the time of a file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 265

file.open
Open a file.

method uint file.open (

 str name,

 uint flag

)

Parameters
name The name of the file to be opened.

flag The follow ing flags can be used.

$OP_READONLY Open as read-only.

$OP_EXCLUSIVE Open in the exclusive mode.

$OP_CREATE Create the file.

$OP_ALWAYS Create the file only if it does not exist.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 266

file.read
 method uint file.read(uint ptr, uint size)
 method uint file.read(buf rbuf, uint size)

Reading a file.

method uint file.read (

 uint ptr,

 uint size

)

Parameters
ptr The pointer w here the file w ill be read.

size The size of the data being read.

Return value
The function returns the size of the read data.

file.read
Reading a file.

method uint file.read (

 buf rbuf,

 uint size

)

Parameters
rbuf The buffer w here data w ill be read. Reading is carried out by adding data to the buffer. It means that read data w ill be

added to those already existing in the buffer.
size The size of the data being read.

Return value
The function returns the size of the read data.

Related links
 Files

Page 267

file.setpos
Set the current position in the file.

method uint file.setpos (

 int offset,

 uint mode

)

Parameters
offset Position offset.

mode The type of moving the position.

$FILE_BEGIN From the beginning of the file.

$FILE_CURRENT From the current position.

$FILE_END From the end of the file.

Return value
The function returns the current position in the file.

Related links
 Files

Page 268

file.settime
Set time for a file.

method uint file.settime (

 filetime ft

)

Parameters
ft New time for the file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 269

file.write
 method uint file.w rite(uint data, uint size)
 method uint file.w rite(buf rbuf)
 method uint file.w ritepos(uint pos, uint data, uint size)

Writing to a file.

method uint file.write (

 uint data,

 uint size

)

Parameters
data The pointer to the memory w hich data w ill be w ritten.

size The size of the data being w ritten.

Return value
The function returns the size of the w ritten data.

file.write
Writing to a file.

method uint file.write (

 buf rbuf

)

Parameters
rbuf The buffer from w hich data w ill be w ritten.

Return value
The function returns the size of the w ritten data.

file.writepos
Writing to a file from the position.

method uint file.writepos (

 uint pos,

 uint data,

 uint size

)

Parameters
pos The start position for w riting.

data The pointer to the memory w hich data w ill be w ritten.

size The size of the data being w ritten.

Return value
The function returns the size of the w ritten data.

Related links
 Files

Page 270

copyfile
Copy a file.

func uint copyfile (

 str name,

 str newname

)

Parameters
name The name of an existing file.

newname A new file name and path. If the file already exists, it w ill be overw ritten.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 271

copyfiles
 func uint copyfiles(str src, str dir, uint flag, uint mode, uint process)
 func uint defcopyproc(uint code, uint left, uint right)

Copying files and directories by mask.

func uint copyfiles (

 str src,

 str dir,

 uint flag,

 uint mode,

 uint process

)

Parameters
src The names of mask of the files or directories being copied.

dir The directory w here files w ill be copied.

flag The combination of search and copy flags.

$FIND_DIR Search only for directories.

$FIND_FILE Search only for files.

$FIND_RECURSE Search in all subdirectories.

$COPYF_RO

Overw rite files w ith the attribute read-only.

$COPYF_SAVEPATH Keep relative paths w hile copying files from subdirectories.

$COPYF_ASK Prompt before copying files already existing.
mode What to do if the file being copied already exists.

$COPY_OVER Overw rite.

$COPY_SKIP Skip.

$COPY_NEWER Overw rite if new er.

$COPY_MODIFIED Overw rite if modified.
procce

ss

The identifier of the function handling messages. You can use &defcopyproc as a default process
function.

Return value
The function returns 1 if the copy operation is successful, otherw ise it returns 0.

defcopyproc
This is a default process function for copyfiles . You can develop and use your ow n process function like it.

func uint defcopyproc (

 uint code,

 uint left,

 uint right

)

Parameters
code The message code.

$COPYN_FOUND The object for copying is found.

$COPYN_NEWDIR A directory is created.

$COPYN_ERRDIR Cannot create a directory.

$COPYN_ASK Copy request.

$COPYN_ERRFILE Error w hile creating a file.

$COPYN_NEWFILE A file w as created.

$COPYN_BEGIN Start copying file.

$COPYN_PROCESS A file is being copied.

Page 272

$COPYN_END Copying is over.

$COPYN_ERRWRITE Error w hile w riting a file.
left Additional parameter.

right Additional parameter.

Return value
You should return one of the follow ing values:

$COPYR_NOTHING Do nothing.

$COPYR_BREAK Break copying.

$COPYR_RETRY Retry.

$COPYR_SKIP Skip.

$COPYR_OVER Write over.

$COPYR_OVERALL Write over all files.

$COPYR_SKIPALL Skip all files.
Related links

 Files

Page 273

createdir
Create a directory.

func uint createdir (

 str name

)

Parameters
name The name of the directory being created.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 274

deletedir
Delete a directory.

func uint deletedir (

 str name

)

Parameters
name The name of the directory being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 275

deletefile
Delete a file.

func uint deletefile (

 str name

)

Parameters
name The name of the file being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 276

delfiles
Deleting files and directories by mask. Directories are deleted together w ith all files and subdirectories. Be really careful w hile
using this function. For example, calling

delfiles("c:\\temp", $FIND_DIR | $FIND_FILE | $FIND_RECURSE)

w ill delete all files and directories named temp on the disk N: including a search in all directories. In this case temp is considered a
mask and since the flag $FIND_RECURSE is specified, the entire disk C: w ill be searched. If you just need to delete the directory
temp w ith all its subdirectories and files, you should call
delfiles("c:\\temp", $FIND_DIR)

Calling
delfiles("c:\\temp*.tmp", $FIND_FILE)

w ill delete all files in the directory tmp leaving subdirectories.
func delfiles (

 str name,

 uint flag

)

Parameters
name The name of mask for searching.

flag Search and delete flags.

$FIND_DIR Search only for directories.

$FIND_FILE Search only for files.

$FIND_RECURSE Search in all subdirectories.

$DELF_RO

Delete files w ith the attribute read-only.

Related links
 Files

Page 277

direxist
Checking if a directory exists.

func uint direxist (

 str name

)

Parameters
name Directory name.

Return value
The function returns 1, if the specified directory exists.

Related links
 Files

Page 278

fileexist
Checking if a file exists.

func uint fileexist (

 str name

)

Parameters
name Filename.

Return value
The function returns 1, if the specified file exists.

Related links
 Files

Page 279

getcurdir
Getting the current directory.

func str getcurdir (

 str dir

)

Parameters
dir The string for getting the result.

Return value
Returns the parameter dir.

Related links
 Files

Page 280

getdrives
Get the names of available disks.

func arrstr getdrives <result>()

Return value
The array (arrstr) of the disk names.

Related links
 Files

Page 281

getdrivetype
Get the type of a disk.

func uint getdrivetype (

 str name

)

Parameters
drive The name of a disk w ith a closing slash. For example: C:\

Return value
Returns one of the follow ing values:

$DRIVE_UNKNOWN Unknow n type.

$DRIVE_NO_ROOT_DIR Invalid path to root.

$DRIVE_REMOVABLE Removable disk.

$DRIVE_FIXED Fixed disk.

$DRIVE_REMOTE Netw ork disk.

$DRIVE_CDROM CD/DVD-ROM drive.

$DRIVE_RAMDISK RAM disk.
Related links

 Files

Page 282

getfileattrib
Getting file attributes.

func uint getfileattrib (

 str name

)

Parameters
name Filename.

Return value
The function returns file attributes. It returns 0xFFFFFFFF in case of an error.

$FILE_ATTRIBUTE_READONLY Read-only.

$FILE_ATTRIBUTE_HIDDEN Hidden.

$FILE_ATTRIBUTE_SYSTEM System.

$FILE_ATTRIBUTE_DIRECTORY Directory.

$FILE_ATTRIBUTE_ARCHIVE Archive.

$FILE_ATTRIBUTE_NORMAL Normal.

$FILE_ATTRIBUTE_TEMPORARY Temporary.

$FILE_ATTRIBUTE_COMPRESSED Compressed.
Related links

 Files

Page 283

getmodulename
Get the file name of the currently running application.

func str getmodulename (

 str dest

)

Parameters
dest The string for getting the name.

Return value
Returns the parameter dest.

Related links
 Files

Page 284

getmodulepath
Get the path to the running EXE file.

func str getmodulepath (

 str dest,

 str subfolder

)

Parameters
dest Result string.

subfolder Additional path. This string w ill be added to the obtained result. It can be empty.

Return value
Returns the parameter dest.

Related links
 Files

Page 285

gettempdir
Get the temporary directory of the application. When this function is called for the first time, in the temporary directory there w ill be
created a directory named genteeXX, w here XX is a unique number for this running application. When the application is closed, the
directory w ill be deleted w ith all its files.

func str gettempdir (

 str dir

)

Parameters
dir The string for getting the result.

Return value
Returns the parameter dir.

Related links
 Files

Page 286

isequalfiles
Check if files are equal. The function compares tw o files.

func uint isequalfiles (

 str left,

 str right

)

Parameters
left The name of the first file to be compared.

right The name of the second file to be compared.

Return value
The function returns 1 if the files are equal, otherw ise it returns 0.

Related links
 Files

Page 287

movefile
Rename, move a file or a directory.

func uint movefile (

 str name,

 str newname

)

Parameters
name The name of an existing file or a directory.

newname A new file name and path.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 288

setattribnormal
Setting the attribute $FILE_ATTRIBUTE_NORMAL.

func uint setattribnormal (

 str name

)

Parameters
name Filename.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 289

setcurdir
Setting the current directory.

func uint setcurdir (

 str dir

)

Parameters
dir The name of the new current directory.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 290

setfileattrib
Set file attributes.

func uint setfileattrib (

 str name,

 uint attrib

)

Parameters
name Filename.

attrib File attributes.

$FILE_ATTRIBUTE_READONLY Read-only.

$FILE_ATTRIBUTE_HIDDEN Hidden.

$FILE_ATTRIBUTE_SYSTEM System.

$FILE_ATTRIBUTE_DIRECTORY Directory.

$FILE_ATTRIBUTE_ARCHIVE Archive.

$FILE_ATTRIBUTE_NORMAL Normal.

$FILE_ATTRIBUTE_TEMPORARY Temporary.

$FILE_ATTRIBUTE_COMPRESSED Compressed.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Files

Page 291

verifypath
Verifying a path and creating all absent directories.

func uint verifypath (

 str name,

 arrstr dirs

)

Parameters
name The name of the path to be verified.

dirs An array for getting all the directories being created. It can be 0->arrstr.

Return value
The function returns 1 if directories have been verified and created successfully. In case of an error, the function returns 0 and
the last dirs item contains the name w here there occurred an error w hile creating a directory.

Related links
 Files

Page 292

finfo
File information structure. This structure is used by getfileinfo function and foreach operator.

type finfo

{

 str fullname

 str name

 uint attrib

 filetime created

 filetime lastwrite

 filetime lastaccess

 uint sizehi

 uint sizelo

}

Members
fullname The full name of the file or directory.

name The name of the file or directory.

attrib File attributes.

created Creation time.

lastwrite Last modification time.

lastaccess Last access time.

sizehi High size uint.

sizelo Low size uint.

Related links
 Files

Page 293

ffind
File search structure. This structure is used in foreach operator. You must not modify fields of ffind variable. You must initialize it
w ith ffind.init method.

type ffind <index = finfo>

{

 stack deep

 str initname

 str wildcard

 uint flag

}

Members
deep Hidden data.

initname Hidden data.

wildcard Hidden data.

flag Hidden data.

Related links
 Files

Page 294

foreach var,ffind
Foreach operator. You can use foreach operator to look over files in some directory w ith the specified w ildcard. The finfo
structure w ill be returned for each found file. You must call ffind.init before using foreach.

ffind fd

fd.init("c:*.exe", $FIND_FILE | $FIND_RECURSE)

foreach finfo cur,fd

{

 print("\(cur.fullname)\n")

}

foreach variable,ffind {...}

Related links
 Files

Page 295

ffind.init
Initializing file search. An object of the ffind type is used to search for files and directories by mask. Before starting the search,
you should call the init method. After this it is possible to use the initiated object in the foreach loop. The finfo structure w ill be
returned for each found file.

method ffind.init (

 str name,

 uint flag

)

Parameters
name The mask for searching files and directories.

flag The combination of the follow ing flags:

$FIND_DIR Search only for directories.

$FIND_FILE Search only for files.

$FIND_RECURSE Search in all subdirectories.

Related links
 Files

Page 296

getfileinfo
Get information about a file or directory.

func uint getfileinfo (

 str name,

 finfo fi

)

Parameters
name The name of a file or directory.

fi The structure finfo all the information w ill be w ritten to.

Return value
It returns 1 if the file is found, it returns 0 otherw ise.

Related links
 Files

Page 297

FTP
FTP protocol. You must call inet_init function before using this library. For using this library, it is required to specify the file ftp.g
(from lib\ftp subfolder) w ith include command.

include : $"...\gentee\lib\ftp\ftp.g"

 Common internet functions
 URL strings

ftp.close Terminates the FTP connection.

ftp.com m and Sends a command.

ftp.createdir Creates a new directory.

ftp.deldir Deletes a directory.

ftp.delfile Deletes a file.

ftp.getcurdir Retrieves the current directory.

ftp.getfile Retrieves a file.

ftp.getsize Retrieves the file size from the FTP server.

ftp.gettim e Retrieves the file time.

ftp.lastresponse The last response from the FTP server.

ftp.list List of files.

ftp.open Establishes an FTP connection.

ftp.putfile Stores a file on the FTP server.

ftp.renam e Renames a file.

ftp.setattrib Sets the attributes.

ftp.setcurdir Sets the current directory.
Common internet functions

inet_close Closing the library.

inet_error Getting an error code.

inet_init Library initialization.

inet_proxy Using a proxy server.

inet_proxyenable Enabling/disabling a proxy server.

inetnotify_func Message handling function.
URL strings

str.iencoding Recoding a string.

str.ihead Getting a header.

str.ihttpinfo Processing a header.

str.iurl The method is used to parse a URL address.

Page 298

ftp.close
Terminates the FTP connection. The method terminates the connection on the FTP server.

method uint ftp.close()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 299

ftp.command
Sends a command. This methos is used to send the specified command directly to an FTP server. The response from the server
can be received w ith help of the ftp.lastresponse method.

method uint ftp.command (

 str cmd

)

Parameters
cmd The command text.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 300

ftp.createdir
Creates a new directory. The method creates a new directory on the FTP server.

method uint ftp.createdir (

 str dirname

)

Parameters
dirname The name of the directory

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 301

ftp.deldir
Deletes a directory. This method deletes a directory stored on the FTP server.

method uint ftp.deldir (

 str dirname

)

Parameters
dirname The name of the required directory

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 302

ftp.delfile
Deletes a file. The method deletes a file stored on the FTP server.

method uint ftp.delfile (

 str filename

)

Parameters
filename The name of the required file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 303

ftp.getcurdir
Retrieves the current directory. The method retrieves the current directory name from the FTP server.

method uint ftp.getcurdir (

 str dirname

)

Parameters
dirname Result string.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 304

ftp.getfile
 method uint ftp.getfile(str filename, buf databuf, uint flag)
 method uint ftp.getfile(str srcname, str destname, uint flag)

Retrieves a file. The method retrieves files from the FTP server.

method uint ftp.getfile (

 str filename,

 buf databuf,

 uint flag

)

Parameters
filename The dow nloaded file name.

databuf The received data buffer. Data are not stored on a drive.

flag Additional flags.

$FTP_BINARY A binary file is dow nloaded.

$FTP_TEXT A text file is dow nloaded. This is a default mode.

$FTP_STR

Appends zero to the end of received data.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

ftp.getfile
The method retrieves files from the FTP server.

method uint ftp.getfile (

 str srcname,

 str destname,

 uint flag

)

Parameters
srcname The dow nloaded file name.

destname A new file name on user's machine.

flag Flags.

$FTP_BINARY A binary file is dow nloaded.

$FTP_TEXT A text file is dow nloaded. This is a default mode.

$FTP_CONTINUE

Proceeds w ith retrieving.

$FTP_SETTIME Sets the same file times as on the FTP server.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 305

ftp.getsize
Retrieves the file size from the FTP server.

method uint ftp.getsize (

 str name,

 uint psize

)

Parameters
name Filename.

psize A pointer to uint value is used to store the file size.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 306

ftp.gettime
Retrieves the file time. Retrieves last w rite times for the file on the FTP server.

method uint ftp.gettime (

 str name,

 datetime dt

)

Parameters
name Filename.

dt The variable of datetime type is used to retrieve the file time.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 307

ftp.lastresponse
The last response from the FTP server. The method returns the last response from the FTP server.

method str ftp.lastresponse (

 str out

)

Parameters
out Result string.

Return value
Returns the parameter out.

Related links
 FTP

Page 308

ftp.list
List of files. The method retrieves a list of files and directories from the FTP server.

method uint ftp.list (

 str data,

 str mode

)

Parameters
list Result string.

cmd The command is used to retrieve a list of files.

"LIST" Returns a list of files in the format of the LIST command.

"NLST" Returns a list of filenames w ith no other information.

"MLSD" Returns a list of files in the format of the MLSD command.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 309

ftp.open
Establishes an FTP connection. This method establishes an FTP connection w ith the server. This method must be called before
other methods dealing w ith the FTP server are called.

method uint ftp.open (

 str url,

 str user,

 str password,

 uint flag,

 uint notify

)

Parameters
url The name or address of the FTP server.

user A user name. If the string is empty, anonymous connections are used.

password A user passw ord. If the connection is anonymous, your e-mail address is required.

flag Connection flags.

$FTP_ANONYM Anonymous connection.

$FTP_PASV Establishes a connection in passive mode.
notify Function is used to receive notification messages. This parameter can be zero.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 310

ftp.putfile
Stores a file on the FTP server. This method is used to upload the required file from the remote host to the FTP server.

method uint ftp.putfile (

 str srcname,

 str destname,

 uint flag

)

Parameters
srcnam

e

The name of the required source file.

destna

me

The name of a file stored on the FTP server.

flag Flags. If the flag of the binary or text mode is not specified, the method makes effort to determine a file type.

$FTP_BINARY A binary file is uploaded.

$FTP_TEXT A text file is uploaded.

$FTP_CONTINUE To proceed w ith file uploading.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 311

ftp.rename
Renames a file. This method renames a file or directory stored on the FTP server.

method uint ftp.rename (

 str from,

 str to

)

Parameters
from The current name of the file or directory.

to A new name.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 312

ftp.setattrib
Sets the attributes. This method sets the attributes for the file or the directory.

method uint ftp.setattrib (

 str name,

 uint mode

)

Parameters
name The name of a file or directory.

mode The attributes for the file.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 313

ftp.setcurdir
Sets the current directory. This method sets a new current directory.

method uint ftp.setcurdir (

 str dirname

)

Parameters
dirname The name of a new directory.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 FTP

Page 314

Gentee API
There is an option for softw are engineers to run programs in Gentee in their ow n applications. To do that, it is enough to connect
the gentee.dll file. It contains several importable functions, w hich are responsible for compilation and execution of the programs.

 Types

gentee_call Call the function from the bytecode.

gentee_com pile Program compilation.

gentee_deinit End of w orking w ith gentee.

gentee_getid Get the object's identifier by its name.

gentee_init Initialization of gentee.

gentee_load Load and launch the bytecode.

gentee_ptr Get Gentee structures.

gentee_set This function specifies some gentee parameters.
Types

gentee The main structure of gentee engine.

com pileinfo The structure for the using in gentee_compile function.

optim ize The structure for the using in compileinfo structure.

Page 315

gentee_call
Call the function from the bytecode. The bytecode should be previously loaded w ith the gentee_load or gentee_compile functions.

uint CDECLCALL gentee_call (

 uint id,

 puint result,

 ...

)

Parameters
id The identifier of the called object. Can be obtained by gentee_getid function.

result Pointer to the memory space, to w hich the result w ill be w ritten. It can be the pointer to uint, long or double .

... Required parameters of the function.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Gentee API

Page 316

gentee_compile
Program compilation. This function allow s to compile and run programs in Gentee.

uint STDCALL gentee_compile (

 pcompileinfo compinit

)

Parameters
compinit The pointer to compileinfo structure w ith the specified compiling options.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Gentee API

Page 317

gentee_deinit
End of w orking w ith gentee.dll. This function should be called w hen the w ork w ith Gentee is finished.

uint STDCALL gentee_deinit(void)

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Gentee API

Page 318

gentee_getid
Get the object's identifier by its name.

uint CDECLCALL gentee_getid (

 pubyte name,

 uint count,

 ...

)

Parameters
nam

e

The name of the object. If you w ant to find a method then use '@' at the beginning of the name. For example, "
@m ym ethod". If you w ant to find an operator then use '#' at the beginning of the name. For example, "#+=".

cou

nt

The count of the follow ing parameters. If you w ant to find any object w ith the defined name then specify the
follow ing flag.

GID_ANYOBJ Find any object
... Specify the sequence of the type's identifiers of the parameters. If the parameter of the function has "of" subtype

then specify it in the HIWORD of the value.

Return value
Returns object s identifier or 0, if the object w as not found.

Related links
 Gentee API

Page 319

gentee_init
Initialization of gentee.dll. This function should be called before beginning to w ork w ith Gentee.

uint STDCALL gentee_init (

 uint flags

)

Parameters
flags Flags.

G_CONSOLE Console application.

G_SILENT Don't display any service messages.

G_CHARPRN Print Window s characters.

G_ASM Run-time converting a bytecode to assembler.

G_TMPRAND Random name of t temporary directory.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Gentee API

Page 320

gentee_load
Load and launch the bytecode. This function loads the bytecode from the file or the memory and launch it if it is required. You can
create the bytecode w ith gentee_compile function.

uint STDCALL gentee_load (

 pubyte bytecode,

 uint flag

)

Parameters
bytecod

e

The pointer to the bytecode or the filename of .ge file.

flag Flags.

GLOAD_ARGS Get command line arguments

GLOAD_FILE Read file to load the bytecode. The bytecode is name of the loading file

GLOAD_RUN Load <entry> functions and run <main> function.

Return value
The result of the executed bytecode if GLOAD_RUN w as defined.

Related links
 Gentee API

Page 321

gentee_ptr
Get Gentee structures. This function returns pointers to global Gentee structures.

pvoid STDCALL gentee_ptr (

 uint par

)

Parameters
par The identifier of the parameter.

GPTR_GENTEE Pointer to gentee structure. See gentee.

GPTR_VM Pointer to vm structure

GPTR_COMPILE Pointer to compile structure

GPTR_CALL Pointer to gentee_call function
.

Return value
The pointer to according global Gentee structure.

Related links
 Gentee API

Page 322

gentee_set
This function specifies some gentee parameters.

uint STDCALL gentee_set (

 uint state,

 pvoid val

)

Parameters
state The identifier of the parameter.

GSET_TEMPDIR Specify the custom temporary directory

GSET_PRINT Specify the custom print function

GSET_MESSAGE Specify the custom message function

GSET_EXPORT Specify the custom export function

GSET_ARGS Specify the command-line arguments

GSET_FLAG Specify flags

GSET_DEBUG Specify the custom debug function

GSET_GETCH Specify the custom getch function
val The new value of the parameter.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Gentee API

Page 323

gentee
The main structure of gentee engine.

typedef struct

{

 uint flags;

 uint multib;

 uint tempid;

 str tempdir;

 uint tempfile;

 printfunc print;

 getchfunc getch;

 messagefunc message;

 exportfunc export;

 debugfunc debug;

 pubyte args;

} gentee, *pgentee;

Members
flags Flags.

G_CONSOLE Console application.

G_SILENT Don't display any service messages.

G_CHARPRN Print Window s characters.

G_ASM Run-time converting a bytecode to assembler.

G_TMPRAND Random name of the temporary directory.
multib 1 if the current page is tw o-bytes code page

tempid The indetifier of the temporary directory.

tempdir The temporary directory

tempfile The handle of the file for locking tempdir

print The custom print function

getch The custom getch and scan function

message The custom message function

export The custom export function

debug The custom debug function

args Command -line arguments. arg1 0 arg2 00

Related links
 Gentee API

Page 324

compileinfo
The structure for the using in gentee_compile function.

typedef struct

{

 pubyte input;

 uint flag;

 pubyte libdirs;

 pubyte include;

 pubyte defargs;

 pubyte output;

 pvoid hthread;

 uint result;

 optimize opti;

} compileinfo, * pcompileinfo;

Members
input The Gentee filename. You can specify the Gentee source if the flag CMPL_SRC is defined.

flag Compile flags.

CMPL_SRC Specify if compileinfo.input is Gentee source

CMPL_NORUN Don't run anything after the compilation.

CMPL_GE Create GE file

CMPL_LINE Proceed #! at the first string

CMPL_DEBUG Compilation w ith the debug information

CMPL_THREAD Compilation in the thread

CMPL_NOWAIT Do not w ait for the end of the compilation. Use w ith CMPL_THREAD only.

CMPL_OPTIMIZE Optimize the output GE file.

CMPL_NOCLEAR Do not clear existing objects in the virtual machine.

CMPL_ASM Convert the bytecode to assembler code.
libdi

rs

Folders for searching files: name1 0 name2 0 ... 00. It may be NULL.

inclu

de

Include files: name1 0 name2 0 ... 00. These files w ill be compiled at the beginning of the compilation process. It
may be NULL.

defar

gs

Define arguments: name1 0 name2 0 ... 00. You can specify additional macro definitions. For example,
MYMODE = 10. In this case, you can use $MYMODE in the Gentee program. It may be NULL.

outpu

t

Ouput filename for GE. In default, .ge file is created in the same folder as .g main file. You can specify any
path and name for the output bytecode file. You must specify CMPL_GE flag to create the bytecode file.

hthre

ad

The result handle of the thread if you specified CMPL_THREAD | CMPL_NOWAIT.

resul

t

Result of the program if it w as executed.

opti Optimize structure. It is used if flag CMPL_OPTIMIZE is defined.

Related links
 Gentee API

Page 325

optimize
The structure for the using in compileinfo structure.

typedef struct

{

 uint flag;

 pubyte nameson;

 pubyte avoidon;

} optimize, * poptimize;

Members
flag Flags of the optimization.

OPTI_DEFINE Delete 'define' objects.

OPTI_NAME Delete names of objects.

OPTI_AVOID Delete not used objects.

OPTI_MAIN Leave only one main function w ith OPTI_AVOID.
nameson Don't delete names w ith the follow ing w ildcards divided by 0 if OPTI_NAME specified

avoidon Don't delete objects w ith the follow ing w ildcards divided by 0 if OPTI_AVOID specified

Related links
 Gentee API

Page 326

Hash
Hash (Associative array). Variables of the hash type allow you to w ork w ith associative arrays or hash tables. Each item in such
an array corresponds to a unique key string. Items are addresses by specifying the corresponding key strings.

 Operators
 Methods
 Type

Operators

hash of type Specifying the type of items.

* hash Get the count of items.

hash[nam e] Getting an item by a key string.

foreach var,hash Foreach operator.
Methods

hash.clear Clear a hash.

hash.create Creating an item w ith this key.

hash.del Delete an item w ith this key.

hash.find Find an item w ith this key.

hash.ignorecase Ignoring the letter case of keys.

hash.sethashsize Set the size of a value table.
Type

hash The main structure of the hash.

Page 327

hash of type
Specifying the type of items. You can specify of type w hen you describe hash variable. In default, the type of the items is uint.

method hash.oftype (

 uint itype

)

Related links
 Hash

Page 328

* hash
Get the count of items.

operator uint * (

 hash left

)

Return value
Count of hash items.

Related links
 Hash

Page 329

hash[name]
Getting an item by a key string. In case there is no item, it w ill be created automatically.

method uint hash.index (

 str key

)

Return value
The ["key"] item of the hash.

Related links
 Hash

Page 330

foreach var,hash
 foreach variable,hash {...}
 foreach variable,hash.keys {...}

Foreach operator. You can use foreach operator to look over all items of the hash. Variable is a pointer to the hash item.

foreach variable,hash {...}

foreach var,hash.keys
You can use foreach operator to look over all keys of the hash.

foreach variable,hash.keys {...}

Related links
 Hash

Page 331

hash.clear
Clear a hash. The method removes all items from the hash.

method hash.clear()

Related links
 Hash

Page 332

hash.create
Creating an item w ith this key. If an item w ith this key already exists, it w ill be initiated again. Items are created automatically w hen
they are addressed as array items for the first time - hashname["key string"].

method uint hash.create (

 str key

)

Parameters
key Key value.

Return value
The pointer to the created item is returned.

Related links
 Hash

Page 333

hash.del
Delete an item w ith this key.

method uint hash.del (

 str key

)

Parameters
key Key value.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Hash

Page 334

hash.find
Find an item w ith this key.

method uint hash.find (

 str key

)

Parameters
key Key value.

Return value
Either the pointer to the found item is returned or 0 is returned if there is no item w ith this key.

Related links
 Hash

Page 335

hash.ignorecase
Ignoring the letter case of keys. Work w ith the keys of this hash table w ithout taking into account the case of letters. The method
must be called before any items are added.

method uint hash.ignorecase

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Hash

Page 336

hash.sethashsize
Set the size of a value table. Set the size of the value table for searching for keys. The method must be called before any items are
added. The parameter contains the pow er of tw o for calculating the size of the table since the number of items must be the pow er
of tw o. By default, the size of a table is 4096 items.

method uint hash.sethashsize (

 uint power

)

Parameters
power The pow er of tw o for calculating the size of the table.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Hash

Page 337

hash
The main structure of the hash.

type hash

{

 arr hashes

 uint itype

 uint isize

 uint count

 uint igncase

 hkeys keys

}

Members
hashes Array of hash values. Pointers to hashkey.

itype The type of the items.

isize The type of the item.

count The count of items.

igncase Equals 1 if the hash ignores case sensetive.

keys The structure for looking over keys

Related links
 Hash

Page 338

HTTP
HTTP protocol. You must call inet_init function before using this library. For using this library, it is required to specify the file http.g
(from lib\http subfolder) w ith include command.

include : $"...\gentee\lib\http\http.g"

 Common internet functions
 URL strings

http_get Getting data via the HTTP protocol.

http_getfile Dow nloading a file via the HTTP protocol.

http_head Getting a header via the HTTP protocol.

http_post Sending data via the HTTP protocol.
Common internet functions

inet_close Closing the library.

inet_error Getting an error code.

inet_init Library initialization.

inet_proxy Using a proxy server.

inet_proxyenable Enabling/disabling a proxy server.

inetnotify_func Message handling function.
URL strings

str.iencoding Recoding a string.

str.ihead Getting a header.

str.ihttpinfo Processing a header.

str.iurl The method is used to parse a URL address.

Page 339

http_get
Getting data via the HTTP protocol. The method sends a GET request to the specified URL and w rites data it receives to the
databuf buffer.

func uint http_get (

 str url,

 buf databuf,

 uint notify,

 uint flag,

 str otherpars

)

Parameters
url The URL address data is received from.

datab

uf

The buffer for getting data.

notif

y

The function for getting notifications. It can be 0.

flag Flags.

$HTTPF_REDIRECT If redirection is used, dow nload from the new address.

$HTTPF_STR Add 0 to databuf after data is received. Use this flag if databuf is a string.

$HTTPF_CONTINUE If the file already exists, resume dow nloading it. It is valid for http_getfile.

$HTTPF_SETTIME Set the same time for the file as it is on the server. It is valid for http_getfile.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 HTTP

Page 340

http_getfile
Dow nloading a file via the HTTP protocol. The method sends a GET request to the specified URL and w rites data it receives to the
specified file.

func uint http_getfile (

 str url,

 str filename,

 uint notify,

 uint flag

)

Parameters
url The URL address for dow nloading.

filena

me

The name of the file for w riting.

notify The function for getting notifications. It can be 0.

flag Flags.

$HTTPF_REDIRECT If redirection is used, dow nload from the new address.

$HTTPF_STR Add 0 to databuf after data is received. Use this flag if databuf is a string.

$HTTPF_CONTINUE If the file already exists, resume dow nloading it. It is valid for http_getfile.

$HTTPF_SETTIME Set the same time for the file as it is on the server. It is valid for http_getfile.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 HTTP

Page 341

http_head
Getting a header via the HTTP protocol. The method sends a HEAD request to the specified URL address and partially parses the
received data.

func uint http_head (

 str url,

 str head,

 httpinfo hi

)

Parameters
url The URL address for getting the header.

head The string for getting the text of the header.

hi The variable of the httpinfo type for getting information about the header.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 HTTP

Page 342

http_post
Sending data via the HTTP protocol. The method sends a POST request w ith the specified string to the specified URL address. It is
used to fill out forms automatically.

func uint http_post (

 str url,

 str data,

 str result,

 uint notify,

 str otherpars

)

Parameters
url The URL address w here the data w ill be sent.

data The string w ith the data being sent. Before the data is sent, request strings w ith parameters should be recoded w ith
the help of the str.iencoding method.

result The string for getting a response from the server.

notify The function for getting notifications. It can be 0.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 HTTP

Page 343

INI File
INI files. This library allow s you to w ork w ith ini files. Variables of the ini type allow you to w ork w ith them. For using this library, it
is required to specify the file ini.g (from lib\ini subfolder) w ith include command.

include : $"...\gentee\lib\ini\ini.g"

 Methods
 Functions

Methods

ini.delkey Deleting a key.

ini.delsection Deleting a section.

ini.getnum Get the numerical value of an entry.

ini.getvalue Get the value of an entry.

ini.keys Get the list of entries in this section.

ini.read Read data from a file.

ini.sections Getting the list of sections.

ini.setnum Write the numerical value of an entry.

ini.setvalue Write the value of an entry.

ini.w rite Save data into an ini file.
Functions

inigetval Get the value of an entry from an ini file.

inisetval Write the value of an entry into an ini file.

Page 344

ini.delkey
Deleting a key.

method ini.delkey (

 str section,

 str key

)

Parameters
section Section name.

key The name of the entry being deleted.

Related links
 INI File

Page 345

ini.delsection
Deleting a section.

method ini.delsection (

 str section

)

Parameters
section The name of the section being deleted.

Related links
 INI File

Page 346

ini.getnum
Get the numerical value of an entry.

method uint ini.getnum (

 str section,

 str key,

 uint defvalue

)

Parameters
section Section name.

key Key name.

defval The value to be assigned if the entry is not found.

Return value
The numerical value of the key.

Related links
 INI File

Page 347

ini.getvalue
Get the value of an entry.

method uint ini.getvalue (

 str section,

 str key,

 str value,

 str defvalue

)

Parameters
section Section name.

key Key name.

value The string for getting the value.

defval The value to be assigned if the entry is not found.

Return value
Returns 1 if the entry is found and 0 otherw ise.

Related links
 INI File

Page 348

ini.keys
Get the list of entries in this section. All entries w ill be w ritten into an array of strings.

method arrstr ini.keys (

 str section,

 arrstr ret

)

Parameters
section Section name.

ret The array of strings the names of entries w ill be w ritten to.

Return value
Returns the parameter ret.

Related links
 INI File

Page 349

ini.read
Read data from a file.

method ini.read (

 str filename

)

Parameters
filename The name of the ini file.

Related links
 INI File

Page 350

ini.sections
Getting the list of sections. All sections w ill be w ritten into an array of strings.

method arrstr ini.sections (

 arrstr ret

)

Parameters
ret The array of strings the names of sections w ill be w ritten to.

Return value
Returns the parameter ret.

Related links
 INI File

Page 351

ini.setnum
Write the numerical value of an entry.

method ini.setnum (

 str section,

 str key,

 uint value

)

Parameters
section Section name.

key Key name.

value The value of the entry being w ritten.

Related links
 INI File

Page 352

ini.setvalue
Write the value of an entry.

method ini.setvalue (

 str section,

 str key,

 str value

)

Parameters
section Section name.

key Key name.

value The value of the entry being w ritten.

Related links
 INI File

Page 353

ini.write
Save data into an ini file.

method uint ini.write (

 str filename

)

Parameters
filename The name of the ini file.

Return value
Returns the size of the w ritten data.

Related links
 INI File

Page 354

inigetval
Get the value of an entry from an ini file.

func str inigetval (

 str ininame,

 str section,

 str key,

 str value,

 str defval

)

Parameters
ininame The name of the ini file.

section Section name.

key Key name.

value The string for w riting the value.

defval The value that w ill be inserted in case of an error or if there is not such an entry.

Return value
Returns the parameter value .

Related links
 INI File

Page 355

inisetval
Write the value of an entry into an ini file.

func uint inisetval (

 str ininame,

 str section,

 str key,

 str value

)

Parameters
ininame The name of the ini file.

section Section name.

key Key name.

value The value of the entry being w ritten.

Return value
#lng\retf

Related links
 INI File

Page 356

Keyboard
These functions are used to emulate the w ork of the keyboard. For using this library, it is required to specify the file keyboard.g
(from lib\keyboard subfolder) w ith include command.

include : $"...\gentee\lib\keyboard\keyboard.g"

sendstr Types a string on the keyboard.

sendvkey Pressing a key.

Page 357

sendstr
Types a string on the keyboard.

func uint sendstr (

 str input

)

Parameters
data The string to be typed on the keyboard.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Keyboard

Page 358

sendvkey
Pressing a key. Press a key alone or together w ith Shift, Ctrl, Alt.

func uint sendvkey (

 ushort vkey,

 uint flag

)

Parameters
vkey Virtual key code.

flag Flags for pressing additional keys.

$SVK_SHIFT Shift is pressed.

$SVK_ALT Alt is pressed.

$SVK_CONTROL Ctrl is pressed.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Keyboard

Page 359

Math
Mathematical functions.

abs The absolute value for integers |x|.

acos Calculating the arc cosine.

asin Calculating the arc sine.

atan Calculating the arc tangent.

ceil Smallest double integer not less than given.

cos Calculating the cosine.

exp Exponential function.

fabs The absolute value for double |x|.

floor Largest double integer not greater than given.

ln Natural logarithm.

log Common logarithm.

m odf Splitting into w hole and fractional parts.

pow Raising to the pow er.

sin Calculating the sine.

sqrt Square root.

tan Calculating the tangent.

Page 360

abs
The absolute value for integers |x|.

func uint abs (

 int x

)

Parameters
x An integer value.

Return value
The absolute value.

Related links
 Math

Page 361

acos
Calculating the arc cosine.

func double acos (

 double x

)

Parameters
x A value for calculating the arc cosine.

Return value
The arc cosine of x w ithin the range [0; PI].

Related links
 Math

Page 362

asin
Calculating the arc sine.

func double asin (

 double x

)

Parameters
x A value for calculating the arc sine.

Return value
The arc cosine of x w ithin the range [-PI/2 ; PI/2].

Related links
 Math

Page 363

atan
Calculating the arc tangent.

func double atan (

 double x

)

Parameters
x A value for calculating the arc tangent.

Return value
The arc tangent of x w ithin the range [-PI/2 ; PI/2].

Related links
 Math

Page 364

ceil
Getting the smallest integer that is greater than or equal to x.

func double ceil (

 double x

)

Parameters
x Floating-point value.

Return value
The closest least integer.

Related links
 Math

Page 365

cos
Calculating the cosine.

func double cos (

 double x

)

Parameters
x An angle in radians.

Return value
The cosine of x.

Related links
 Math

Page 366

exp
Exponential function.

func double exp (

 double x

)

Parameters
x A pow er for the number e.

Return value
The number e raised to the pow er of x.

Related links
 Math

Page 367

fabs
The absolute value for double |x|.

func double fabs (

 double x

)

Parameters
x Floating-point value.

Return value
The absolute value.

Related links
 Math

Page 368

floor
Getting the largest integer that is less than or equal to x.

func double floor (

 double x

)

Parameters
x Floating-point value.

Return value
The closest greatest integer.

Related links
 Math

Page 369

ln
Natural logarithm.

func double ln (

 double x

)

Parameters
x Floating-point value.

Return value
The natural logarithm ln(x).

Related links
 Math

Page 370

log
Common logarithm.

func double log (

 double x

)

Parameters
x Floating-point value.

Return value
The common logarithm log10(x).

Related links
 Math

Page 371

modf
Splitting into w hole and fractional parts.

func double modf (

 double x,

 uint y

)

Parameters
x Floating-point value.

y A pointer to double for getting the w hole part.

Return value
The fractional part of x.

Related links
 Math

Page 372

pow
Raising to the pow er.

func double pow (

 double x,

 double y

)

Parameters
x A base.

y A pow er.

Return value
Raising x to the pow er of y.

Related links
 Math

Page 373

sin
Calculating the sine.

func double sin (

 double x

)

Parameters
x An angle in radians.

Return value
The sine of x.

Related links
 Math

Page 374

sqrt
Square root.

func double sqrt (

 double x

)

Parameters
x A positive floating-point value.

Return value
The square root of x.

Related links
 Math

Page 375

tan
Calculating the tangent.

func double tan (

 double x

)

Parameters
x An angle in radians.

Return value
The tangent of x.

Related links
 Math

Page 376

Memory
Gentee has ow n memory manager. This overview describes the memory management provided by Gentee. You can allocate and
use memory w ith these functions.

m alloc Allocate the memory.

m cm p Comparison memory.

m copy Copying memory.

m free Memory deallocation.

m len Size till zero.

m m ove Move memory.

m zero Filling memory w ith zeros.

Page 377

malloc
Allocate the memory. The function allocates the memory of the specified size.

func uint malloc (

 uint size

)

Parameters
size The size of memory space to be allocated.

Return value
The pointer to the allocated memory space or 0 in case of an error.

Related links
 Memory

Page 378

mcmp
Comparison memory. The function compares tw o memory spaces.

func int mcmp (

 uint dest,

 uint src,

 uint len

)

Parameters
dest The pointer to the first memory space.

src The pointer to the second memory space.

len The size being compared.

Return value

0 The spaces are equal.

<0 The first space is smaller.

>0 The second space is smaller.
Related links

 Memory

Page 379

mcopy
Copying memory. The function copies data from one memory space into another.

func uint mcopy (

 uint dest,

 uint src,

 uint len

)

Parameters
dest The pointer for the data being copied.

src The pointer to the source of the data being copied.

len The size of the data being copied.

Return value
The pointer to the copied data.

Related links
 Memory

Page 380

mfree
Memory deallocation. The function deallocates memory.

func uint mfree (

 uint ptr

)

Parameters
ptr The pointer to the memory space to be deallocated.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Memory

Page 381

mlen
Size till zero. Determines the number of bytes till zero.

func uint mlen (

 uint data

)

Parameters
data The pointer to a memory space.

Return value
The number of bytes till the zero character.

Related links
 Memory

Page 382

mmove
Move memory. The function moves the specified space. The initial and final data may overlap.

func mmove (

 uint dest,

 uint src,

 uint len

)

Parameters
dest The pointer for the data being copied.

src The pointer to the source of the data being copied.

len The size of the data being copied.

Related links
 Memory

Page 383

mzero
Filling memory w ith zeros. The functions zeroes the memory space.

func uint mzero (

 uint dest,

 uint len

)

Parameters
dest The pointer to a memory space.

len The size of the data being zeroed.

Return value
The pointer to the zeroed data.

Related links
 Memory

Page 384

ODBC (SQL)
Data Access (SQL queries) Using ODBC. This library is applied for running SQL queries on a database using ODBC. The queries
w ith parameters are not supported by the current version. Read ODBC description for more details. For using this library, it is
required to specify the file odbc.g (from lib\odbc subfolder) w ith include command.

include : $"...\gentee\lib\odbc\odbc.g"

 Methods
 SQL query methods
 Field methods

ODBC description A brief description of ODBC library.
Methods

odbc.connect Create a database connection.

odbc.disconnect Disconnect from a database.

odbc.geterror Get the last error message.

odbc.new query Create a new ODBC query.
SQL query methods

odbcquery.active Checks w hether a result set exists after the SQL query execution.

odbcquery.close Close a result set.

odbcquery.fieldbynam e Find a field based on a specified field name.

odbcquery.first Move the cursor to the first record in the result set.

odbcquery.geterror Get the last error message.

odbcquery.getrecordcount Get the total number of records in a result set.

odbcquery.last Move the cursor to the last record in the result set.

odbcquery.m oveby Move the cursor to a position relative to its current position.

odbcquery.next Move the cursor to the next record in the result set.

odbcquery.prior Move the cursor to the prior record in the result set.

odbcquery.run SQL query execution.

odbcquery.settim eout Set query timeout.
Field methods

odbcfield.getbuf Gets the field's value as a value of the buf type (the binary data).

odbcfield.getdatetim e Gets the field's value as a value of the datetime type.

odbcfield.getdouble Gets the field's value as a floating-point number.

odbcfield.getindex Gets the field index number.

odbcfield.getint Gets the field's value as an integer.

odbcfield.getlong Get the field's value as a number of the long type.

odbcfield.getnam e Gets a field's name.

odbcfield.getnum eric Gets the field's value as a fixed point number.

odbcfield.getstr Get the field's value as a string of the str type.

odbcfield.gettype Gets a type of the field's value.

odbcfield.isnull Determines if the field contains the NULL value.

Page 385

Page 386

ODBC description
A brief description of ODBC library. The object of the odbc type provides connection to a database. The objects of the
odbcquery type are used to run SQL queries and move the cursor through a result set. This object has got the arr fields[] of
odbcfield array that contains result set fields odbcfield; furthermore, the number of elements of the array equals the number of
the fields.

The objects of the odbcfield type make it possible to get the required information of the field as w ell as the field's value
(depending on the current position of the cursor in the result set).

The sequence of operations for w orking w ith the database:

 create an ODBC connection to the database using the odbc.connect method;
 create a new ODBC query using the odbc.new query method. Note that severalqueries are likely to be created for one

connection;
 run a SQL query using the odbcquery.run method; the query may retrieve the result set (the SELECT command) or no data (the

INSERT command, the UPDATE command etc.);
 move the cursor through the result set using the follow ing methods: odbcquery.first, odbcquery.next etc. if necessary. The

access is gained to the fields through the fields array odbcquery.fields[i], w here i - a field number begining from 0, or w ith
the odbcquery.fieldbyname method;

 use the odbcfield.getstr method, the odbcfield.getint method etc.in order to get field values;
 run the next SQL query after processing if necessary;
 disconnect from the database using the ODBC method odbc.disconnect.

There are some peculiarities to keep in mind w hen w orking w ith ODBC drivers:
w hile running a SQL query w ith the help of multiple sequential statements of the "INSERT ..." type, only some of the query
statements are being executed (there can be from 300 to 1000 statements used for the "SQL server" driver) and no error
message is displayed. In this case, you had better divide such queries into several parts;
some types of drivers do not make it possible to calculate the total number of messages received by the SQL query.

Related links
 ODBC (SQL)

Page 387

odbc.connect
 method uint odbc.connect(str connectstr)
 method uint odbc.connect(str dsn, str user, str psw)

Create a database connection. You can connect to a database using a string connection or a DSN name.

The method is called in order to connect to the database w ith the help of the string connection. Use The ODBC connection string
for this purpose, that contains a driver type, a database name and some additional parameters. The example below show s a type
of the string connected to the SQL server: "Driver={SQL Server};Server=MSSQLSERVER;
Database=m ydatabase;Trusted_Connection=yes;"

method uint odbc.connect (

 str connectstr

)

Parameters
connectstr Connection string.

Return value
Returns 1 if the connection is successful; otherw ise, returns 0.

odbc.connect
This method is used to connect to the database through the previously defined connection (the DSN name).

method uint odbc.connect (

 str dsn,

 str user,

 str psw

)

Parameters
dsn Name of a previously defined connection - DSN.

user User name.

psw User passw ord.

Return value
Returns 1 if the connection is successful; otherw ise, returns 0.

Related links
 ODBC (SQL)

Page 388

odbc.disconnect
Disconnect from a database.

method odbc.disconnect()

Related links
 ODBC (SQL)

Page 389

odbc.geterror
Get the last error message. Gets the message if the last error occured w hile connecting to the database.

method uint odbc.geterror (

 str state,

 str message

)

Parameters
state This string w ill contain the current state.

message This string w ill contain an error message.

Return value
Returns the last error code.

Related links
 ODBC (SQL)

Page 390

odbc.newquery
Create a new ODBC query. Creates a new ODBC query for the particular ODBC connection. Several queries are likely to be
created for one connection. Queries are created inside the ODBC object and deleted in case of its deletion.

method odbcquery odbc.newquery()

Return value
A new ODBC query.

Related links
 ODBC (SQL)

Page 391

odbcquery.active
Checks w hether a result set exists after the SQL query execution. If the SQL query of the "SELECT ..." type has been executed
successfully, this method returns nonzero.

method uint odbcquery.active()

Return value
Returns nonzero if a result set exists.

Related links
 ODBC (SQL)

Page 392

odbcquery.close
Close a result set. Closes a result set. This method is used after the SQL query of the SELECT... type has been executed. While
calling the odbcquery.run method, the given method is automatically called.

method odbcquery.close()

Related links
 ODBC (SQL)

Page 393

odbcquery.fieldbyname
Find a field based on a specified field name.

method odbcfield odbcquery.fieldbyname (

 str name

)

Parameters
name Field name.

Return value
Returns the field or zero if fields w ith the same name are not found.

Related links
 ODBC (SQL)

Page 394

odbcquery.first
Move the cursor to the first record in the result set.

method uint odbcquery.first()

Return value
If the cursor has been moved, it returns nonzero.

Related links
 ODBC (SQL)

Page 395

odbcquery.geterror
Get the last error message. Gets the message if the last error occured w hile running the SQL query.

method uint odbcquery.geterror (

 str state,

 str message

)

Parameters
state This string w ill contain the current state.

message This string w ill contain an error message.

Return value
Returns the last error code.

Related links
 ODBC (SQL)

Page 396

odbcquery.getrecordcount
Get the total number of records in a result set. Gets the total number of records in a result set w hen the SQL query of the
"SELECT ..." type has been executed.

method uint odbcquery.getrecordcount()

Return value
Returns the the total number of records; if the total number of records is not determined, it returns -1.

Related links
 ODBC (SQL)

Page 397

odbcquery.last
Move the cursor to the last record in the result set.

method uint odbcquery.last()

Return value
If the cursor has been moved, it returns nonzero.

Related links
 ODBC (SQL)

Page 398

odbcquery.moveby
Move the cursor to a position relative to its current position.

method uint odbcquery.moveby (

 int off

)

Parameters
off Indicates the number of records to move the cursor. If the number is negative, the cursor is moved backw ard.

Return value
If the cursor has been moved, it returns nonzero.

Related links
 ODBC (SQL)

Page 399

odbcquery.next
Move the cursor to the next record in the result set.

method uint odbcquery.next()

Return value
If the cursor has been moved, it returns nonzero; otherw ise, it returns zero. If the current record is the last, it returns zero.

Related links
 ODBC (SQL)

Page 400

odbcquery.prior
Move the cursor to the prior record in the result set.

method uint odbcquery.prior()

Return value
If the cursor has been moved, it returns nonzero.

Related links
 ODBC (SQL)

Page 401

odbcquery.run
SQL query execution.

method uint odbcquery.run (

 str sqlstr

)

Parameters
sqlstr String that contains the SQL query.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 ODBC (SQL)

Page 402

odbcquery.settimeout
Set query timeout. Sets the number of seconds to w ait for a SQL query execution.

method odbcquery.settimeout (

 uint timeout

)

Parameters
timeout The number of seconds to w ait for a SQL query execution. If it is equal to 0, then there is no timeout.

Related links
 ODBC (SQL)

Page 403

odbcfield.getbuf
Gets the field's value as a value of the buf type (the binary data). This method is applied for fields w ith binary data.

method buf odbcfield.getbuf (

 buf dest

)

Parameters
dest Result buf object.

Return value
Returns the parameter dest.

Related links
 ODBC (SQL)

Page 404

odbcfield.getdatetime
Gets the field's value as a value of the datetime type. This method is applied for fields that contain date and/or time.

method datetime odbcfield.getdatetime (

 datetime dt

)

Parameters
dt Result datetime object.

Return value
Returns the parameter dt.

Related links
 ODBC (SQL)

Page 405

odbcfield.getdouble
Gets the field's value as a floating-point number. This method is applied for fields that contain floating-point numbers.

method double odbcfield.getdouble()

Return value
Returns the field's value.

Related links
 ODBC (SQL)

Page 406

odbcfield.getindex
Gets the field index number.

method uint odbcfield.getindex()

Return value
Field index number.

Related links
 ODBC (SQL)

Page 407

odbcfield.getint
 method int odbcfield.getint()
 method uint odbcfield.getuint()

Gets the field's value as an integer. This method is applied for fields that contain integers (the storage size is up to 4 bytes).

method int odbcfield.getint()

Return value
Returns the field's value.

odbcfield.getuint
Gets the field's value as an unsigned integer. This method is applied for fields that contain integers (the storage size is up to 4
bytes).

method uint odbcfield.getuint()

Return value
Returns the field's value.

Related links
 ODBC (SQL)

Page 408

odbcfield.getlong
 method long odbcfield.getlong()
 method ulong odbcfield.getulong()

Get the field's value as a number of the long type. This method is applied for fields that contain long integers (8 bytes).

method long odbcfield.getlong()

Return value
Returns the field's value.

odbcfield.getulong
Get the field's value as a number of the ulong type. This method is applied for fields that contain long integers (8 bytes).

method ulong odbcfield.getulong()

Return value
Returns the field's value.

Related links
 ODBC (SQL)

Page 409

odbcfield.getname
Gets a field's name.

method str odbcfield.getname (

 str result

)

Parameters
result Result string.

Return value
Returns the parameter result.

Related links
 ODBC (SQL)

Page 410

odbcfield.getnumeric
Gets the field's value as a fixed point number. This method is applied for fields that contain fixed point numbers. The structure is
applied for data of this type, as follow s:

type numeric {

 long val

 uint scale

}

The val field contains the integer representation of a number, and the scale field indicates how many times val is divided by 10 in
order to get a real number (a precision number).
method numeric odbcfield.getnumeric (

 numeric num

)

Parameters
num Result numeric structure.

Return value
Returns the parameter num .

Related links
 ODBC (SQL)

Page 411

odbcfield.getstr
Get the field's value as a string of the str type. This method is applied for fields that contain a string, a date, time and numeric
fields.

method str odbcfield.getstr (

 str dest

)

Parameters
dest Result str object.

Return value
Returns the parameter dest.

Related links
 ODBC (SQL)

Page 412

odbcfield.gettype
Gets a type of the field's value. Returns the identifier of one of the follow ing types: buf, str, int, long, num eric, double,
datetim e .

method uint odbcfield.gettype()

Return value
Type identifier.

Related links
 ODBC (SQL)

Page 413

odbcfield.isnull
Determines if the field contains the NULL value.

method uint odbcfield.isnull()

Return value
Returns nonzero, if the field contains the NULL value; otherw ise, it returns zero.

Related links
 ODBC (SQL)

Page 414

Process
Process, shell, arguments and environment functions.

argc Get the number of parameters.

argv Get a parameter.

exit Exit the current program.

getenv Get an environment variable.

process Starting a process.

setenv Set a value of an environment variable.

shell Launch or open a file in the associated application.

Page 415

argc
Get the number of parameters. The function returns the count of parameters in the command line.

func uint argc()

Return value
The number of parameters passed in the command line.

Related links
 Process

Page 416

argv
Get a parameter. The function returns the parameter of the command line.

func str argv (

 str ret,

 uint num

)

Parameters
ret A variable to w rite the return value to.

num The number of the parameter to be obtained beginning from 1.

Return value
Returns the parameter ret.

Related links
 Process

Page 417

exit
Exit the current program.

func exit (

 uint code

)

Parameters
code A return code or the results of the w ork of the program.

Related links
 Process

Page 418

getenv
Get an environment variable.

func str getenv (

 str varname,

 str ret

)

Parameters
varname Environment variable name.

ret String for getting the value.

Return value
Returns the parameter ret.

Related links
 Process

Page 419

process
Starting a process.

func uint process (

 str cmdline,

 str workdir,

 uint result,

 uint state

)

Parameters
cmdline The command line.

workdir The w orking directory. It can be 0->str.

result The pointer to uint for getting the result. If 0, the function w ill not w ait until the process finishes its w ork.

Return value
1 if the calling process w as successful; otherw ise 0.

Related links
 Process

Page 420

setenv
Set a value of an environment variable. The function adds new environment variable or modifies the value of the existing
environment variable. New values w ill be valid only in the current process.

func uint setenv (

 str varname,

 str varvalue

)

Parameters
varname Environment variable name.

varvalue A new value of the environment variable.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Process

Page 421

shell
Launch or open a file in the associated application.

func shell (

 str name

)

Parameters
name Filename.

Related links
 Process

Page 422

Registry
Working w ith the Registry. This library allow s you to w ork w ith the Window s Registry. For using this library, it is required to
specify the file registry.g (from lib\registry subfolder) w ith include command.

include : $"...\gentee\lib\registry\registry.g"

 Functions
 Methods

Functions

regdelkey Deleting a registry key.

regdelvalue Deleting the value of a key.

reggetm ultistr Getting a string sequence.

reggetnum Get the numerical value of a registry key.

regkeys Getting the list of keys.

regsetm ultistr Writing a string sequence.

regsetnum Write a number as a registry key value.

regvaltype Get the type of a registry key value.

regvalues Getting the list of values in a key.

regverify Creating missing keys.
Methods

buf.regget Getting a value.

buf.regset Writing a value.

str.regget Getting a value.

str.regset Write a string as a registry key value.

Page 423

regdelkey
Deleting a registry key.

func uint regdelkey (

 uint root,

 str subkey

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey The name of the registry key being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Registry

Page 424

regdelvalue
Deleting the value of a key.

func uint regdelvalue (

 uint root,

 str subkey,

 str value

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

value The name of the value being deleted.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Registry

Page 425

reggetmultistr
Getting a string sequence. Get the value of a registry key of the $REG_MULTISZ type into a string array.

func arrstr reggetmultistr (

 uint root,

 str subkey,

 str valname,

 arrstr val

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname A name of the specified key value.

val The array strings are w ritten to.

Return value
Returns the parameter val.

Related links
 Registry

Page 426

reggetnum
 func uint reggetnum(uint root, str subkey, str valname)
 func uint reggetnum(uint root, str subkey, str valname, uint defval)

Get the numerical value of a registry key.

func uint reggetnum (

 uint root,

 str subkey,

 str valname

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname A name of the specified key value.

Return value
A numerical value is returned.

reggetnum
Get the numerical value of a registry key.

func uint reggetnum (

 uint root,

 str subkey,

 str valname,

 uint defval

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname A name of the specified key value.

defval The default number in case there is no value.

Return value
A numerical value is returned.

Related links
 Registry

Page 427

regkeys
Getting the list of keys.

func uint regkeys (

 uint root,

 str subkey,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

ret The array the names of the keys w ill be w ritten to.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Registry

Page 428

regsetmultistr
Writing a string sequence. Write an array of strings as a value of a registry key of the $REG_MULTISZ type. If there is no key, it
w ill be created.

func uint regsetmultistr (

 uint root,

 str subkey,

 str valname,

 arrstr val,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname The name of the value being w ritten.

val The arrays of strings being w ritten.

ret The array of strings all the created keys w ill be w ritten to. It can be 0.

Return value

0 No data has been w ritten.

1 The value of the key w as created during the w riting process.

2 Data is w ritten into the existing value.
Related links

 Registry

Page 429

regsetnum
Write a number as a registry key value. If there is no key, it w ill be created.

func uint regsetnum (

 uint root,

 str subkey,

 str valname,

 uint value,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname The name of the value being w ritten.

value The number being w ritten.

ret The array of strings all the created keys w ill be w ritten to. It can be 0.

Return value

0 No data has been w ritten.

1 The value of the key w as created during the w riting process.

2 Data is w ritten into the existing value.
Related links

 Registry

Page 430

regvaltype
Get the type of a registry key value.

func uint regvaltype (

 uint root,

 str subkey,

 str valname

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname The name of the key value the type of w hich is being determined.

Return value
0 is returned if the type is not determined or there is no such value. Besides, the follow ing values are possible:

$REG_NONE Unknow n.

$REG_SZ String.

$REG_EXPAND_SZ Expanded string. String w ith environment variables.

$REG_BINARY Binary data.

$REG_DWORD Number.

$REG_MULTI_SZ String sequence.
Related links

 Registry

Page 431

regvalues
Getting the list of values in a key.

func uint regvalues (

 uint root,

 str subkey,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

ret The array the names of values in the keys w ill be w ritten to.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Registry

Page 432

regverify
Creating missing keys. Check if there is a certain key in the registry and create it if it is not there.

func uint regverify (

 uint root,

 str subkey,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey The name of the registry key being checked.

ret The array of strings all the created keys w ill be w ritten to. It can be 0.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Registry

Page 433

buf.regget
Getting a value. This method w rites the value of a registry key into a Buffer object.

method buf buf.regget (

 uint root,

 str subkey,

 str valname,

 uint regtype

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname A name of the specified key value.

regtype The pointer to uint the type of this value w ill be w ritten to. It can be 0.

Return value
Returns the object w hich method has been called.

Related links
 Registry

Page 434

buf.regset
Writing a value. Write the data of an buf object as registry key value. If there is no key, it w ill be created.

method uint buf.regset (

 uint root,

 str subkey,

 str valname,

 uint regtype,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname The name of the value being w ritten.

regtype Value type.

$REG_NONE Unknow n.

$REG_SZ String.

$REG_EXPAND_SZ Expanded string. String w ith environment variables.

$REG_BINARY Binary data.

$REG_DWORD Number.

$REG_MULTI_SZ String sequence.
ret The array of strings all the created keys w ill be w ritten to. It can be 0.

Return value

0 No data has been w ritten.

1 The value of the key w as created during the w riting process.

2 Data is w ritten into the existing value.
Related links

 Registry

Page 435

str.regget
 method str str.regget(uint root, str subkey, str valname)
 method str str.regget(uint root, str subkey, str valname, str defval)

Getting a value. This method w rites the value of a registry key into a String object.

method str str.regget (

 uint root,

 str subkey,

 str valname

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname A name of the specified key value.

Return value
Returns the object w hich method has been called.

str.regget
This method w rites the value of a registry key into a String object.

method str str.regget (

 uint root,

 str subkey,

 str valname,

 str defval

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname A name of the specified key value.

defval The default string in case there is no value.

Return value
Returns the object w hich method has been called.

Related links
 Registry

Page 436

str.regset
 method uint str.regset(uint root, str subkey, str valname, arrstr ret)
 method uint str.regset(uint root, str subkey, str valname)

Write a string as a registry key value. If there is no key, it w ill be created.

method uint str.regset (

 uint root,

 str subkey,

 str valname,

 arrstr ret

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname The name of the value being w ritten.

ret The array of strings all the created keys w ill be w ritten to. It can be 0.

Return value

0 No data has been w ritten.

1 The value of the key w as created during the w riting process.

2 Data is w ritten into the existing value.

str.regset
Write a string as a registry key value. If there is no key, it w ill be created.

method uint str.regset (

 uint root,

 str subkey,

 str valname

)

Parameters
root A root key.

$HKEY_CLASSES_ROOT Classes Root.

$HKEY_CURRENT_USER Current user's settings.

$HKEY_LOCAL_MACHINE Local machine settings.

$HKEY_USERS All users' settings
subkey A name of the registry key.

valname The name of the value being w ritten.

Return value

0 No data has been w ritten.

1 The value of the key w as created during the w riting process.

2 Data is w ritten into the existing value.

.

Related links
 Registry

Page 437

Socket
Sockets and common internet functions. You must call inet_init function before using this library. For using this library, it is required
to specify the file internet.g (from lib\socket subfolder) w ith include command.

include : $"...\gentee\lib\socket\internet.g"

 Common internet functions
 Socket methods
 URL strings
 Types

Common internet functions

inet_close Closing the library.

inet_error Getting an error code.

inet_init Library initialization.

inet_proxy Using a proxy server.

inet_proxyenable Enabling/disabling a proxy server.

inetnotify_func Message handling function.
Socket methods

socket.close Closes a socket.

socket.connect Opens a socket.

socket.isproxy Connecting via a proxy or not.

socket.recv The method gets a packet from the connected server.

socket.send The method sends a request to the connected server.

socket.urlconnect Creating and connecting a socket to a URL.
URL strings

str.iencoding Recoding a string.

str.ihead Getting a header.

str.ihttpinfo Processing a header.

str.iurl The method is used to parse a URL address.
Types

httpinfo HTTP header data.

inetnotify Type for handling messages.

socket Socket structure.

Page 438

inet_close
Closing the library. This function must be called after the w ork w ith the library is finished.

func uint inet_close()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 439

inet_error
Getting an error code. The function returns the code of the last error. Codes greater than 10000 are codes of errors in the library
WinSock 2 (w s2_32.dll).

func uint inet_error()

Return value
The code of the last error.

$ERRINET_DLLVERSION Unsupported version of w s2_32.dll.

$ERRINET_HTTPDATA Not HTTP data is received.

$ERRINET_USERBREAK The process is interrupted by the user.

$ERRINET_OPENFILE Cannot open the file.

$ERRINET_WRITEFILE Cannot w rite the file.

$ERRINET_READFILE Cannot read the file.

$ERRFTP_RESPONSE The w rong response of the server.

$ERRFTP_QUIT The w rong QUIT response of the server.

$ERRFTP_BADUSER The bad user name.

$ERRFTP_BADPSW The w rong passw ord.

$ERRFTP_PORT Error PORT.
Related links

 Socket

Page 440

inet_init
Library initialization. This function must be called before w orking w ith the library.

func uint inet_init()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 441

inet_proxy
Using a proxy server. The functions allow s you to specify a proxy server to be used for connecting to the Internet.

func uint inet_proxy (

 uint flag,

 str proxyname

)

Parameters
flag The flag specifying for w hich protocols the specified proxy should be used.

$PROXY_HTTP Use a proxy server for the HTTP protocol.

$PROXY_FTP Use a proxy server for the FTP protocol.

$PROXY_ALL Use a proxy server for all protocols.

$PROXY_EXPLORER Take the proxy server information from the Internet Explorer settings. In this case
the proxyname parameter can be empty.

proxyna

me

The name of the proxy server. It must contain a host name and a port number separated by a colon.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 442

inet_proxyenable
Enabling/disabling a proxy server. The function allow s you to enable or disable the proxy server for various protocols. Initially, the
proxy server must be specified using the inet_proxy function.

func uint inet_proxyenable (

 uint flag,

 uint enable

)

Parameters
flag The flag specifying for w hich protocols the proxy should be enabled or disabled.

$PROXY_HTTP Use a proxy server for the HTTP protocol.

$PROXY_FTP Use a proxy server for the FTP protocol.

$PROXY_ALL Use a proxy server for all protocols.

$PROXY_EXPLORER Take the proxy server information from the Internet Explorer settings. In this case the
proxyname parameter can be empty.

enab

le

Specify 1 to enable the proxy server or 0 to disable the proxy server.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 443

inetnotify_func
Message handling function. When some functions are called, you can specify a function for handing incoming notifications. In
particular, it allow s you to show the w orking process to the user. This handling function must have the follow ing parameters.

func uint inetnotify_func (

 uint code,

 inetnotify ni

)

Parameters
co

de

Message code.

$NFYINET_ERROR An error occurred. The code of the error can be got w ith the help of the inet_error
function.

$NFYINET_CONNECT Server connection.

$NFYINET_SEND Sending a request.

$NFYINET_POST Sending data.

$NFYINET_HEAD Processing the header. ni.param points to httpinfo.

$NFYINET_REDIRECT Request redirection. ni.sparam contains the new URL.

$NFYINET_GET Data is received. ni.param contains the total size of all data.

$NFYINET_PUT Data is sent. ni.param contains the total size of all data.

$NFYINET_END The connection is terminated.

$NFYFTP_RESPONSE Response of the FTP server. The field ni.head contains it.

$NFYFTP_SENDCMD Sending a command to the FTP server. The field ni.head contains it.

$NFYFTP_NOTPASV Passive mode w ith the FTP server is unavailable.
ni The variable of the inetnotify type w ith additional data.

Return value
The function must return 1 to continue w orking and 0 otherw ise.

Related links
 Socket

Page 444

socket.close
Closes a socket.

method uint socket.close()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 445

socket.connect
Opens a socket. The method creates a socket and establishes a connection to the host and port specified in the host and port
fields of the socket structure.

method uint socket.connect()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 446

socket.isproxy
Connecting via a proxy or not. This method can be used to determine if a socket is connected via a proxy server or not.

method uint socket.isproxy()

Return value
1 is returned if the socket is connected via a proxy server and 0 is returned otherw ise.

Related links
 Socket

Page 447

socket.recv
The method gets a packet from the connected server.

method uint socket.recv (

 buf data

)

Parameters
data The buffer for w riting data. The received packet w ill be added to the data already existing in the buffer.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 448

socket.send
 method uint socket.send(str data)
 method uint socket.send(buf data)

The method sends a request to the connected server.

method uint socket.send (

 str data

)

Parameters
data Request string.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

socket.send
The method sends a request data to the connected server.

method uint socket.send (

 buf data

)

Parameters
data Request buffer.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 449

socket.urlconnect
Creating and connecting a socket to a URL. The method is used to create and connect a socket to the specified Internet address. If
a proxy server is enabled, the connection w ill be established via it.

method uint socket.urlconnect (

 str url,

 str host,

 str path

)

Parameters
url The URL address for connecting.

host The string for getting the host from the URL.

path The string for getting the relative path from the URL.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 450

str.iencoding
Recoding a string. The method recodes the specified string in order to send it using the POST method. Spaces are replaced w ith
'+', special characters are replaced w ith their hexadecimal representations %XX. The result w ill be w ritten to the string for w hich
the method w as called.

method str str.iencoding (

 str src

)

Parameters
src The string for recoding.

Return value
Returns the object w hich method has been called.

Related links
 Socket

Page 451

str.ihead
Getting a header. The method is used to get the message header. It w ill be w ritten to the string for w hich the method w as called.
Besides, the header w ill be deleted from the data object.

method str str.ihead (

 buf data

)

Parameters
data The buffer of the string containing the data being processed.

Return value
Returns the object w hich method has been called.

Related links
 Socket

Page 452

str.ihttpinfo
Processing a header. The method processes a string as an HTTP header and w rites data it gets into the httpinfo structure.

{

Parameters
hi The variable of the httpinfo type for getting the results.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Socket

Page 453

str.iurl
The method is used to parse a URL address.

method uint str.iurl (

 str host,

 str port,

 str path

)

Parameters
host The string for getting the host name.

port The string for getting the port.

path The string for getting the relative path.

Return value
1 is returned if the FTP protocol w as specified. Otherw ise, 0 is returned.

Related links
 Socket

Page 454

httpinfo
HTTP header data. The structure is used to get data from an HTTP header. Depending on the header, some fields may be empty.

type httpinfo

{

 uint code

 datetime dt

 str size

 str location

}

Members
code Message code.

dt Last modified date.

size File size.

location New file location.

Related links
 Socket

Page 455

inetnotify
Type for handling messages. This structure is passed to the message handling function as a parameter. Additional parameters
take various values depending on the message code.

type inetnotify

{

 str url

 str head

 uint param

 str sparam

}

Members
url The URL address being processed.

head The header of the received packet.

param Additional integer parameter.

sparam Additional string parameter.

Related links
 Socket

Page 456

socket
Socket structure.

type socket

{

 str host

 ushort port

 uint socket

 uint flag

}

Members
host Host name.

port Port number.

socket Open socket identifier.

flag Additional flags. $SOCKF_PROXY - The socket is opened via a proxy server.

Related links
 Socket

Page 457

Stack
Stack. You can use variables of the stack type for w orking w ith stacks. The stack type is inherited from the arr type. So, you
can also use methods of the arr type.

 Methods
 Type

Methods

stack.pop Extracting an item.

stack.popval Extracting an number.

stack.push Add an item to a stack.

stack.top Get the top item in a stack.
Type

stack The main structure of the stack.

Page 458

stack.pop
 method uint stack.pop
 method str stack.pop(str val)

Extracting an item. The method deletes the top item from a stack.

method uint stack.pop

Return value
The pointer to the next new top item.

stack.pop
The method extracts a string from a stack. The stack must be described as stack of str.

method str stack.pop (

 str val

)

Parameters
val Result string.

Return value
Returns the parameter val.

Related links
 Stack

Page 459

stack.popval
Extracting an number. The method extracts a number from a stack.

method uint stack.popval

Return value
The number extracted from the stack is returned.

Related links
 Stack

Page 460

stack.push
 method uint stack.push
 method uint stack.push(uint val)
 method str stack.push(str val)

Add an item to a stack.

method uint stack.push

Return value
The pointer to the added item.

stack.push
The method adds a number to a stack.

method uint stack.push (

 uint val

)

Parameters
val Pushing uint or int number.

Return value
The added value is returned.

stack.push
The method adds a string to a stack. The stack must be described as stack of str.

method str stack.push (

 str val

)

Parameters
val Pushing string.

Return value
The added string is returned.

Related links
 Stack

Page 461

stack.top
Get the top item in a stack.

method uint stack.top

Return value
The pointer to the top item.

Related links
 Stack

Page 462

stack
The main structure of the stack.

type stack <inherit = arr>

{

}

Related links
 Stack

Page 463

String
Strings. It is possible to use variables of the str type for w orking w ith strings. The str type is inherited from the buf type. So, you
can also use methods of the buf type.

 Operators
 Methods
 Search methods

Operators

* str Get the length of a string.

str + str Putting tw o strings together and creating a resulting string.

str = str Copy the string.

str += type Appending types to the string.

str == str Comparison operation.

str < str Comparison operation.

str > str Comparison operation.

str(type) Converting types to str.

type(str) Converting string to other types.
Methods

str.append Data addition.

str.appendch Adding a character to a string.

str.clear Clearing a string.

str.copy... Copying.

str.crc Calculating the checksum.

str.del Delete a substring.

str.dellast Delete the last character.

str.eqlen... Comparison.

str.fill... Filling a string.

str.find... Find the character in the string.

str.hex... Converting an unsigned integer in the hexadecimal form.

str.insert Insertion.

str.islast Check the final character.

str.lines Convert a multi-line string to an array of strings.

str.low er Converting to low ercase.

str.out4 Output a 32-bit value.

str.print Print a string into the console w indow .

str.printf Write formatted data to a string.

str.read Read a string from a file.

str.repeat Repeating a string.

str.replace Replacing in a string.

Page 464

str.replacech Replace a character.

str.setlen Setting a new string size.

str.split Splitting a string.

str.substr Getting a substring.

str.trim ... Trimming a string.

str.upper Converting to uppercase.

str.w rite Writing a string to a file.

str.w riteappend Appending string to a file.
Search methods

spattern The pattern structure for the searching.

spattern.init Creating data search pattern.

spattern.search Search a pattern in another string.

str.search Substring search.

Page 465

* str
Get the length of a string.

operator uint * (

 str left

)

Return value
The length of the string.

Related links
 String

Page 466

str + str
Putting tw o strings together and creating a resulting string.

operator str +<result> (

 str left,

 str right

)

Return value
The new result string.

Related links
 String

Page 467

str = str
Copy the string.

operator str = (

 str left,

 str right

)

Return value
The result string.

Related links
 String

Page 468

str += type
 operator str +=(str left, str right)
 operator str +=(str left, uint right)
 operator str +=(str left, int val)
 operator str +=(str left, float val)
 operator str +=(str left, long val)
 operator str +=(str left, ulong val)
 operator str +=(str left, double val)

Appending types to the string. Append str to str => str += str.

operator str += (

 str left,

 str right

)

Return value
The result string.

str += uint
Append uint to str => str += uint.

operator str += (

 str left,

 uint right

)

str += int
Append int to str => str += int.

operator str += (

 str left,

 int val

)

str += float
Append float to str => str += float.

operator str += (

 str left,

 float val

)

str += long
Append long to str => str += long.

operator str += (

 str left,

 long val

)

str += ulong
Append ulong to str => str += ulong.

operator str += (

 str left,

 ulong val

)

str += double
Append double to str => str += double .

operator str += (

 str left,

 double val

)

Related links
 String

Page 469

Page 470

str == str
 operator uint ==(str left, str right)
 operator uint !=(str left, str right)
 operator uint %==(str left, str right)
 operator uint %!=(str left, str right)

Comparison operation.

operator uint == (

 str left,

 str right

)

Return value
Returns 1 if the strings are equal. Otherw ise, it returns 0.

str != str
Comparison operation.

operator uint != (

 str left,

 str right

)

Return value
Returns 0 if the strings are equal. Otherw ise, it returns 1.

str %== str
Comparison operation w ith ignore case.

operator uint %== (

 str left,

 str right

)

Return value
Returns 1 if the strings are equal w ith ignore case. Otherw ise, it returns 0.

str %!= str
Comparison operation w ith ignore case.

operator uint %!= (

 str left,

 str right

)

Return value
Returns 0 if the strings are equal w ith ignore case. Otherw ise, it returns 1.

Related links
 String

Page 471

str < str
 operator uint <(str left, str right)
 operator uint <=(str left, str right)
 operator uint %<(str left, str right)
 operator uint %<=(str left, str right)

Comparison operation.

operator uint < (

 str left,

 str right

)

Return value
Returns 1 if the first string is less than the second one. Otherw ise, it returns 0.

str <= str
Comparison operation.

operator uint <= (

 str left,

 str right

)

Return value
Returns 1 if the first string is less or equal the second one. Otherw ise, it returns 0.

str %< str
Comparison operation w ith ignore case.

operator uint %< (

 str left,

 str right

)

Return value
Returns 1 if the first string is less than the second one w ith ignore case. Otherw ise, it returns 0.

str %<= str
Comparison operation w ith ignore case.

operator uint %<= (

 str left,

 str right

)

Return value
Returns 1 if the first string is less or equal the second one w ith ignore case. Otherw ise, it returns 0.

Related links
 String

Page 472

str > str
 operator uint >(str left, str right)
 operator uint >=(str left, str right)
 operator uint %>(str left, str right)
 operator uint %>=(str left, str right)

Comparison operation.

operator uint > (

 str left,

 str right

)

Return value
Returns 1 if the first string is greater than the second one. Otherw ise, it returns 0.

str >= str
Comparison operation.

operator uint >= (

 str left,

 str right

)

Return value
Returns 1 if the first string is greater or equal the second one. Otherw ise, it returns 0.

str %> str
Comparison operation w ith ignore case.

operator uint %> (

 str left,

 str right

)

Return value
Returns 1 if the first string is greater than the second one w ith ignore case. Otherw ise, it returns 0.

str %>= str
Comparison operation w ith ignore case.

operator uint %>= (

 str left,

 str right

)

Return value
Returns 1 if the first string is greater or equal the second one w ith ignore case. Otherw ise, it returns 0.

Related links
 String

Page 473

str(type)
 method str int.str < result >
 method str uint.str < result >
 method str float.str <result>
 method str long.str <result>
 method str ulong.str<result>
 method str double.str <result>

Converting types to str. Convert int to str => str(int).

method str int.str < result >

Return value
The result string.

str(uint)
Convert uint to str => str(uint).

method str uint.str < result >

str(float)
Convert float to str => str(float).

method str float.str <result>

str(long)
Convert long to str => str(long).

method str long.str <result>

str(ulong)
Convert ulong to str => str(ulong).

method str ulong.str<result>

str(double)
Convert double to str => str(double).

method str double.str <result>

Related links
 String

Page 474

type(str)
 method int str.int
 method uint str.uint
 method float str.float
 method long str.long
 method double str.double

Converting string to other types. Convert str to int => int(str).

method int str.int

Return value
The result value of the according type.

uint(str)
Convert str to uint => uint(str).

method uint str.uint

float(str)
Convert str to float => float(str).

method float str.float

long(str)
Convert str to long => long(str).

method long str.long

double(str)
Convert str to double => double(str).

method double str.double

Related links
 String

Page 475

str.append
Data addition. Add data to a string.

method str str.append (

 uint src,

 uint size

)

Parameters
src The pointer to the data to be added.

size The size of the data being added.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 476

str.appendch
Adding a character to a string.

method str str.appendch (

 uint ch

)

Parameters
ch The character to be added.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 477

str.clear
Clearing a string.

method str str.clear()

Return value
Returns the object w hich method has been called.

Related links
 String

Page 478

str.copy...
 method str str.copy(uint ptr)
 method str str.load(uint ptr, uint len)

Copying. The method copies data into a string.

method str str.copy (

 uint ptr

)

Parameters
ptr The pointer to the data being copied. All data to the zero character w ill be copied.

Return value
Returns the object w hich method has been called.

str.load
The method copies data into a string.

method str str.load (

 uint ptr,

 uint len

)

Parameters
src The pointer to the data being copied. If data does not end in a zero, it w ill be added automatically.

size The size of the data being copied.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 479

str.crc
Calculating the checksum. The method calculates the checksum of a string.

method uint str.crc()

Return value
The string checksum is returned.

Related links
 String

Page 480

str.del
Delete a substring.

method str str.del (

 uint off,

 uint len

)

Parameters
off The offset of the substring being deleted.

len The size of the substring being deleted.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 481

str.dellast
Delete the last character. The method deletes the last character if it is equal the specified parameter.

method str str.dellast (

 uint ch

)

Parameters
ch A character to be checked.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 482

str.eqlen...
 method uint str.eqlen(uint ptr)
 method uint str.eqlenign(uint ptr)
 method uint str.eqlen(str src)
 method uint str.eqlenign(str src)

Comparison. Compare a string w ith the specified data. The comparison is carried out only at the length of the string the method is
called for.

method uint str.eqlen (

 uint ptr

)

Parameters
ptr The pointer to the data to be compared.

Return value
Returns 1 if there is an equality and 0 otherw ise.

str.eqlenign
Compare a string w ith the specified data. The comparison is carried out only at the length of the string the method is called for.

method uint str.eqlenign (

 uint ptr

)

Parameters
ptr The pointer to the data to be compared. The comparison is case-insensitive.

str.eqlen
Compare a string w ith the specified string. The comparison is carried out only at the length of the string the method is called for.

method uint str.eqlen (

 str src

)

Parameters
src The string to be compared.

str.eqlenign
Compare a string w ith the specified string. The comparison is carried out only at the length of the string the method is called for.

method uint str.eqlenign (

 str src

)

Parameters
src The string to be compared. The comparison is case-insensitive.

Related links
 String

Page 483

str.fill...
 method str str.fill(str val, uint count, uint flag)
 method str str.fillspacel(uint len)
 method str str.fillspacer(uint len)

Filling a string. Fill a string to the left or to the right.

method str str.fill (

 str val,

 uint count,

 uint flag

)

Parameters
val The string that w ill be filled.

count The number of additions.

flag Flags.

$FILL_LEFT Filling on the left side.

$FILL_LEN The count parameter contains the final string size.

$FILL_CUT Cut if longer than the final size. Used together w ith FILL_LEN.

Return value
Returns the object w hich method has been called.

str.fillspacel
Fill a string w ith spaces to the left.

method str str.fillspacel (

 uint len

)

Parameters
len Final string size.

str.fillspacer
Fill a string w ith spaces to the right.

method str str.fillspacer (

 uint len

)

Parameters
len Final string size.

Related links
 String

Page 484

str.find...
 method uint str.findch(uint offset, uint symbol, uint fromend)
 method uint str.findch(uint symbol)
 method uint str.findchr(uint symbol)
 method uint str.findchfrom(uint symbol, uint offset)
 method uint str.findchnum(uint symbol, uint i)

Find the character in the string.

method uint str.findch (

 uint offset,

 uint symbol,

 uint fromend

)

Parameters
offset The offset to start searching from.

symbol Search character.

fromend If it equals 1, the search w ill be carried out from the end of the string.

Return value
The offset of the character if it is found. If the character is not found, the length of the string is returned.

str.findch
Find the character from the beginning of the string.

method uint str.findch (

 uint symbol

)

Parameters
symbol Search character.

str.findchr
Find the character from the end of the string.

method uint str.findchr (

 uint symbol

)

Parameters
symbol Search character.

str.findchfrom
Find the character from the specified offset in the string.

method uint str.findchfrom (

 uint symbol,

 uint offset

)

Parameters
symbol Search character.

offset The offset to start searching from.

str.findchnum
Find the #glt(i) character in the string.

method uint str.findchnum (

 uint symbol,

 uint i

)

Parameters
symbol Search character.

i The number of the character starting from 1.

Related links
 String

Page 485

str.hex...
 method str str.hexl(uint val)
 method str str.hexu(uint val)
 func str hex2strl<result>(uint val)
 func str hex2stru<result>(uint val)

Converting an unsigned integer in the hexadecimal form. Low er characters.

method str str.hexl (

 uint val

)

Parameters
val The unsigned integer value to be converted into the string.

Return value
Returns the object w hich method has been called.

str.hexu
Converting an unsigned integer in the hexadecimal form. (upper characters).

method str str.hexu (

 uint val

)

Parameters
val The unsigned integer value to be converted into the string.

Return value
Returns the object w hich method has been called.

hex2strl
Converting an unsigned integer in the hexadecimal form. (low er characters).

func str hex2strl<result> (

 uint val

)

Parameters
val The unsigned integer value to be converted into the string.

Return value
The new result string.

hex2stru
Converting an unsigned integer in the hexadecimal form. (upper characters).

func str hex2stru<result> (

 uint val

)

Parameters
val The unsigned integer value to be converted into the string.

Return value
The new result string.

Related links
 String

Page 486

str.insert
Insertion. The method inserts one string into another.

method str str.insert (

 uint offset,

 str value

)

Parameters
offset The offset w here string w ill be inserted.

value The string being inserted.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 487

str.islast
Check the final character.

method uint str.islast (

 uint symbol

)

Parameters
symbol The character being checked.

Return value
Returns 1 if the last character in the string coincides w ith the specified one and 0 otherw ise.

Related links
 String

Page 488

str.lines
 method arrstr str.lines(arrstr ret, uint trim, arr offset)
 method arrstr str.lines(arrstr ret, uint trim)
 method arrstr str.lines<result>(uint trim)

Convert a multi-line string to an array of strings.

method arrstr str.lines (

 arrstr ret,

 uint trim,

 arr offset

)

Parameters
ret The result array of strings.

trim Specify 1 if you w ant to trim all characters less or equal space in lines.

offset The array for getting offsets of lines in the string. It can be 0->>arr.

Return value
The result array of strings.

str.lines
Convert a multi-line string to an array of strings.

method arrstr str.lines (

 arrstr ret,

 uint trim

)

Parameters
ret The result array of strings.

trim Specify 1 if you w ant to trim all characters less or equal space in lines.

str.lines
Convert a multi-line string to an array of strings.

method arrstr str.lines<result> (

 uint trim

)

Parameters
trim Specify 1 if you w ant to trim all characters less or equal space in lines.

Return value
The new result array of strings.

Related links
 String

Page 489

str.lower
 method str str.low er()
 method str str.low er(uint off, uint size)

Converting to low ercase. The method converts characters in a string to low ercase.

method str str.lower()

Return value
Returns the object w hich method has been called.

str.lower
Convert a substring in the specified string to low ercase.

method str str.lower (

 uint off,

 uint size

)

Parameters
off Substring offset.

size Substring size.

Related links
 String

Page 490

str.out4
 method str str.out4(str format, uint val)
 method str str.out8(str format, ulong val)

Output a 32-bit value. The value is appended at the end of the string.

method str str.out4 (

 str format,

 uint val

)

Parameters
format The format of the output. It is the same as in the function 'printf' in C programming language.

val 32-bit value to be appended.

Return value
Returns the object w hich method has been called.

str.out8
Output a 64-bit value. The value is appended at the end of the string.

method str str.out8 (

 str format,

 ulong val

)

Parameters
format The format of the output. It is the same as in the function 'printf' in C programming language.

val 64-bit value to be appended.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 491

str.print
 method str.print()
 func print(str output)

Print a string into the console w indow .

method str.print()

print
Print a string into the console w indow .

func print (

 str output

)

Parameters
output The output string.

Related links
 String

Page 492

str.printf
Write formatted data to a string. The method formats and stores a series of characters and values in string. Each argument is
converted and output according to the corresponding C/C++ format specification (printf) in format parameter.

method str str.printf (

 str format,

 collection clt

)

Parameters
format The format of the output.

clt Optional arguments.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 493

str.read
Read a string from a file.

method uint str.read (

 str filename

)

Parameters
filename Filename.

Return value
The size of the read data.

Related links
 String

Page 494

str.repeat
Repeating a string. Repeat a string the specified number of times.

method str str.repeat (

 uint count

)

Parameters
count The number of repeatitions. The result w ill be w ritten into this very string.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 495

str.replace
 method str str.replace(uint offset, uint size, str value)
 method str str.replace(arrstr aold, arrstr anew , uint flags)
 method str str.replace(str sold, str snew , uint flags)

Replacing in a string. The method replaces data in a string.

method str str.replace (

 uint offset,

 uint size,

 str value

)

Parameters
offset The offset of the data being replaced.

size The size of the data being replaced.

value The string being inserted.

Return value
Returns the object w hich method has been called.

str.replace
The method looks for strings from one array and replace to strings of another array.

method str str.replace (

 arrstr aold,

 arrstr anew,

 uint flags

)

Parameters
aold The strings to be replaced.

anew The new strings.

flags Flags.

$QS_IGNCASE Case-insensitive search.

$QS_WORD Search the w hole w ord only.

$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.

Return value
Returns the object w hich method has been called.

str.replace
The method replaces one string to another string in the source string.

method str str.replace (

 str sold,

 str snew,

 uint flags

)

Parameters
sold The string to be replaced.

snew The new string.

flags Flags.

$QS_IGNCASE Case-insensitive search.

$QS_WORD Search the w hole w ord only.

$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 496

str.replacech
Replace a character. The method copies a source string w ith the replacing a character to a string.

method str str.replacech (

 str src,

 uint from,

 str to

)

Parameters
src Initial string.

from A character to be replaced.

to A string for replacing.

Return value
Returns the object w hich method has been called.

Related links
 String

Page 497

str.setlen
 method str str.setlen(uint len)
 method str str.setlenptr()

Setting a new string size. The method does not reserve space. You cannot specify the size of a string greater than the reserved
space you have. Mostly, this function is used for specifying the size of a string after external functions w rite data to it.

method str str.setlen (

 uint len

)

Parameters
len New string size.

Return value
Returns the object w hich method has been called.

str.setlenptr
Recalculate the size of a string to the zero character. The function can be used to determine the size of a string after other
functions w rite data into it.

method str str.setlenptr()

Related links
 String

Page 498

str.split
 method arrstr str.split(arrstr ret, uint symbol, uint flag)
 method arrstr str.split <result> (uint symbol, uint flag)
 method uint str.split(uint symbol, str left, str right)

Splitting a string. The method splits a string into substrings taking into account the specified separator.

method arrstr str.split (

 arrstr ret,

 uint symbol,

 uint flag

)

Parameters
ret The result array of strings.

symb

ol

Separator.

flag Flags.

$SPLIT_EMPTY Take into account empty substrings.

$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.

Return value
The result array of strings.

The method splits a string into the new result array of strings.

method arrstr str.split <result> (

 uint symbol,

 uint flag

)

Parameters
symb

ol

Separator.

flag Flags.

$SPLIT_EMPTY Take into account empty substrings.

$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.

Return value
The new result array of strings.

str.split
The method looks for the first symbol and splits a string into tw o parts.

method uint str.split (

 uint symbol,

 str left,

 str right

)

Parameters
symbol Separator.

left The substring left on the symbol.

right The substring right on the symbol.

Return value

Page 499

Returns 1 if the separator has been found. Otherw ise, return 0.

Related links
 String

Page 500

str.substr
 method str str.substr(str src, uint off, uint len)
 method str str.substr(uint off, uint len)

Getting a substring.

method str str.substr (

 str src,

 uint off,

 uint len

)

Parameters
src Initial string.

off Substring offset.

len Substring size.

Return value
Returns the object w hich method has been called.

str.substr
Get a substring. The result substring w ill be w ritten over the existing string.

method str str.substr (

 uint off,

 uint len

)

Parameters
off Substring offset.

len Substring size.

Related links
 String

Page 501

str.trim...
 method str str.trimsys()
 method str str.trimrsys()
 method str str.trim(uint symbol, uint flag)
 method str str.trimrspace()
 method str str.trimspace()

Trimming a string. Deleting spaces and special characters on both sides.

method str str.trimsys()

Return value
Returns the object w hich method has been called.

str.trimrsys
Deleting spaces and special characters on the right.

method str str.trimrsys()

str.trim
Delete the specified character on either sides of a string.

method str str.trim (

 uint symbol,

 uint flag

)

Parameters
symbo

l

The character being deleted.

flag Flags.

$TRIM_LEFT Trim the left side.

$TRIM_RIGHT Trim the right side.

$TRIM_ONE Delete only one character.

$TRIM_PAIR If the character being deleted is a bracket, look the closing bracket on the right

$TRIM_SYS Delete characters less or equal space.

str.trimrspace
Deleting spaces on the right.

method str str.trimrspace()

str.trimspace
Deleting spaces on the both sides.

method str str.trimspace()

Related links
 String

Page 502

str.upper
 method str str.upper()
 method str str.upper(uint off, uint size)

Converting to uppercase. The method converts characters in a string to uppercase.

method str str.upper()

Return value
Returns the object w hich method has been called.

str.upper
Convert a substring in the specified string to uppercase.

method str str.upper (

 uint off,

 uint size

)

Parameters
off Substring offset.

size Substring size.

Related links
 String

Page 503

str.write
Writing a string to a file.

method uint str.write (

 str filename

)

Parameters
filename The name of the file for w riting. If the file already exists, it w ill be overw ritten.

Return value
The size of the w ritten data.

Related links
 String

Page 504

str.writeappend
Appending string to a file. The method appends a string to the specified file.

method uint str.writeappend (

 str filename

)

Parameters
filename Filename.

Return value
The size of the w ritten data.

Related links
 String

Page 505

spattern
The pattern structure for the searching. The spattern type is used to search through the string for another string. Don't change the
fields of the spattern strcuture. The spattern variable must be initialized w ith spattern.init method.

type spattern

{

 uint pattern

 uint size

 reserved shift[1024]

 uint flag

}

Members
pattern Hidden data.

size The size of the pattern.

shift[1024] Hidden data.

flag Search flags.

Related links
 String

Page 506

spattern.init
 method spattern spattern.init(buf pattern, uint flag)
 method spattern spattern.init(str pattern, uint flag)

Creating data search pattern. Before search start-up, call this method in order to initialize the search pattern. Then do a search of
the specified pattern w ith spattern.search.

method spattern spattern.init (

 buf pattern,

 uint flag

)

Parameters
pattern Search string (pattern).

flag Search flags.

$QS_IGNCASE Case-insensitive search.

$QS_WORD Search the w hole w ord only.

$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.

Return value
Returns the object w hich method has been called.

spattern.init
Creating data search pattern.

method spattern spattern.init (

 str pattern,

 uint flag

)

Parameters
pattern Search string (pattern).

flag Search flags.

$QS_IGNCASE Case-insensitive search.

$QS_WORD Search the w hole w ord only.

$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.

Related links
 String

Page 507

spattern.search
 method uint spattern.search(buf src, uint offset)
 method uint spattern.search(uint ptr, uint size)
 method uint spattern.search(str src, uint offset)

Search a pattern in another string. Before search start-up, call the spattern.init method in order to initialize the search pattern.

method uint spattern.search (

 buf src,

 uint offset

)

Parameters
src String w here the specified string w ill be searched (search pattern).

offset Offset w here the search must be started or proceeded.

Return value
The offset of the found fragment. If the offset is equal to string size,no fragment is found.

spattern.search
Search a pattern in a memory data.

method uint spattern.search (

 uint ptr,

 uint size

)

Parameters
ptr The pointer to the memory data w here the pattern w ill be searched.

size The size of the memory data.

Return value
The offset of the found fragment. If the offset is equal to string size,no fragment is found.

spattern.search
Search a pattern in another string.

method uint spattern.search (

 str src,

 uint offset

)

Parameters
src String w here the specified string w ill be searched (search pattern).

offset Offset w here the search must be started or proceeded.

Return value
The offset of the found fragment. If the offset is equal to string size,no fragment is found.

Related links
 String

Page 508

str.search
Substring search. The method determines if the string has been found inside another string or not.

method uint str.search (

 str pattern,

 uint flag

)

Parameters
pattern Search string (pattern).

flag Search flags.

$QS_IGNCASE Case-insensitive search.

$QS_WORD Search the w hole w ord only.

$QS_BEGINWORD Search w ords w hich start w ith the specified pattern.

Return value
The method returns 1 if the substring is found, otherw ise the return value is zero.

Related links
 String

Page 509

String - Filename
Filename strings. Methods for w orking w ith file names.

str.faddnam e Adding a name.

str.fappendslash Adding a slash.

str.fdelslash Deleting the final slash.

str.ffullnam e Getting the full name.

str.fgetdir Getting the directory name.

str.fgetdrive Getting the name of a disk.

str.fgetext Get the extension.

str.fgetparts Getting name components.

str.fnam eext Getting the name of a file.

str.fsetext Modifying the extension.

str.fsetnam e Modifying the name of the file.

str.fsetparts Compounding or modifying the name.

str.fsplit Getting the directory and name of a file.

str.fw ildcard Wildcard check.

Page 510

str.faddname
Adding a name. Add a file name or a directory to a path.

method str str.faddname (

 str name

)

Parameters
name The name being added. It w ill be added after a slash.

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 511

str.fappendslash
Adding a slash. Add '\' to the end of a string if it is not there.

method str str.fappendslash()

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 512

str.fdelslash
Deleting the final slash. Delete the final '\' if it is there.

method str str.fdelslash()

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 513

str.ffullname
Getting the full name. The method gets the full path and name of a file.

method str str.ffullname (

 str name

)

Parameters
name Initial filename.

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 514

str.fgetdir
Getting the directory name. The method removes the final name of a file or directory.

method str str.fgetdir (

 str name

)

Parameters
name Initial filename.

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 515

str.fgetdrive
Getting the name of a disk. Get the netw ork name (\\computer\share\) or the name of a disk (c:\).

method str str.fgetdrive (

 str name

)

Parameters
name Initial filename.

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 516

str.fgetext
Get the extension. The method w rites the file extension into the result string.

method str str.fgetext< result >

Return value
The result string w ith the extension.

Related links
 String - Filename

Page 517

str.fgetparts
Getting name components. Get the directory, name and extensions of a file.

method str.fgetparts (

 str dir,

 str fname,

 str ext

)

Parameters
dir The string for getting the directory. It can be 0->str.

fname The string for getting the file name. It can be 0->str.

ext The string for getting the file extension. It can be 0->str.

Related links
 String - Filename

Page 518

str.fnameext
Getting the name of a file. Get the name of the filename or directory from the full path.

method str str.fnameext (

 str name

)

Parameters
name Initial filename.

Related links
 String - Filename

Page 519

str.fsetext
 method str str.fsetext(str name, str ext)
 method str str.fsetext(str ext)

Modifying the extension. The method gets the file name w ith a new extension.

method str str.fsetext (

 str name,

 str ext

)

Parameters
name Initial file name.

ext File extension.

Return value
Returns the object w hich method has been called.

str.fsetext
Modifying the extension in the filename.

method str str.fsetext (

 str ext

)

Parameters
ext File extension.

Related links
 String - Filename

Page 520

str.fsetname
Modifying the name of the file. The method modifies the current filename.

method str str.fsetname (

 str filename

)

Parameters
filename A new filename.

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 521

str.fsetparts
Compounding or modifying the name. Compound the name of a file out of the path, name and extension. This function can be also
used to modify the path, name or extension of a file. In this case if some component equals 0->str, it is left unmodified.

method str str.fsetparts (

 str dir,

 str fname,

 str ext

)

Parameters
dir Directory.

fname Filename.

ext File extension.

Return value
Returns the object w hich method has been called.

Related links
 String - Filename

Page 522

str.fsplit
Getting the directory and name of a file. The method splits the full path into the name of the final file or directory and the rest of the
path.

method str.fsplit (

 str dir,

 str name

)

Parameters
dir The string for getting the directory.

name The string for getting the name of a file or directory.

Related links
 String - Filename

Page 523

str.fwildcard
Wildcard check. Check if a string coincides w ith the specified mask.

method uint str.fwildcard (

 str wildcard

)

Parameters
wildcard The mask being checked. It can contain '?' (one character) and '*' (any number of characters).

Return value
Returns 1 if the string coincides w ith the mask.

Related links
 String - Filename

Page 524

String - Unicode
Unicode strings. It is possible to use variables of the ustr type for w orking w ith Unicode strings. The ustr type is inherited from
the buf type. So, you can also use methods of the buf type.

 Operators
 Methods

Operators

* ustr Get the length of a unicode string.

ustr[i] Getting ushort character [i] of the Unicode string.

ustr + ustr Add tw o strings.

ustr = type Assign types to unicode string.

str = ustr Copy a unicode string to a string.

ustr += type Appending types to the unicode string.

str == ustr Comparison operation.

ustr < ustr Comparison operation.

ustr > ustr Comparison operation.

ustr(str) Converting a string to a unicode string ustr(str).

str(ustr) Converting a unicode string to a string str(ustr).
Methods

ustr.clear Clearing a unicode string.

ustr.copy Copying.

ustr.del Delete a substring.

ustr.findch Find the character in the unicode string.

ustr.from utf8 Convert a UTF-8 string to a unicode string.

ustr.insert Insertion.

ustr.lines Convert a multi-line unicode string to an array of unicode strings.

ustr.read Read a unicode string from a file.

ustr.replace Replacing in a unicode string.

ustr.reserve Memory reservation.

ustr.setlen Setting a new size of the unicode string.

ustr.split Splitting a unicode string.

ustr.substr Getting a unicode substring.

ustr.toutf8 Convert a unicode string to UTF-8 string.

ustr.trim ... Trimming a unicode string.

ustr.w rite Writing a unicode string to a file.

Page 525

* ustr
Get the length of a unicode string.

operator uint * (

 ustr left

)

Return value
The length of the unicode string.

Related links
 String - Unicode

Page 526

ustr[i]
Getting ushort character [i] of the Unicode string.

method uint ustr.index (

 uint id

)

Return value
The [i] ushort character of the Unicode string.

Related links
 String - Unicode

Page 527

ustr + ustr
 operator ustr +<result> (ustr left, ustr right)
 operator ustr +<result>(ustr left, str right)

Add tw o strings. Putting tw o unicode strings together and creating a resulting unicode string.

operator ustr +<result> (

 ustr left,

 ustr right

)

Return value
The new result unicode string.

ustr + str
Add a unicode string and a string.

operator ustr +<result> (

 ustr left,

 str right

)

Return value
The new result unicode string.

Related links
 String - Unicode

Page 528

ustr = type
 operator ustr =(ustr left, str right)
 operator ustr =(ustr left, ustr right)

Assign types to unicode string. Copy a string to the unicode string ustr = str.

operator ustr = (

 ustr left,

 str right

)

Return value
The result unicode string.

ustr = ustr
Copy a unicode string to another unicode string.

operator ustr = (

 ustr left,

 ustr right

)

Related links
 String - Unicode

Page 529

str = ustr
Copy a unicode string to a string.

operator str = (

 str left,

 ustr right

)

Return value
The result string.

Related links
 String - Unicode

Page 530

ustr += type
 operator ustr +=(ustr left, ustr right)
 operator ustr +=(ustr left, str right)

Appending types to the unicode string. Append ustr to ustr => ustr += ustr.

operator ustr += (

 ustr left,

 ustr right

)

Return value
The result unicode string.

ustr += str
Append str to ustr => ustr += str.

operator ustr += (

 ustr left,

 str right

)

Related links
 String - Unicode

Page 531

str == ustr
 operator uint ==(str left, ustr right)
 operator uint ==(ustr left, str right)

Comparison operation.

operator uint == (

 str left,

 ustr right

)

Return value
Returns 1 if the strings are equal. Otherw ise, it returns 0.

ustr == str
Comparison operation.

operator uint == (

 ustr left,

 str right

)

Return value
Returns 1 if the strings are equal. Otherw ise, it returns 0.

Related links
 String - Unicode

Page 532

ustr < ustr
 operator uint <(ustr left, ustr right)
 operator uint <=(ustr left, ustr right)

Comparison operation.

operator uint < (

 ustr left,

 ustr right

)

Return value
Returns 1 if the first string is less than the second one. Otherw ise, it returns 0.

ustr <= ustr
Comparison operation.

operator uint <= (

 ustr left,

 ustr right

)

Return value
Returns 1 if the first string is less or equal the second one. Otherw ise, it returns 0.

Related links
 String - Unicode

Page 533

ustr > ustr
 operator uint >(ustr left, ustr right)
 operator uint >=(ustr left, ustr right)

Comparison operation.

operator uint > (

 ustr left,

 ustr right

)

Return value
Returns 1 if the first string is greater than the second one. Otherw ise, it returns 0.

ustr >= ustr
Comparison operation.

operator uint >= (

 ustr left,

 ustr right

)

Return value
Returns 1 if the first string is greater or equal the second one. Otherw ise, it returns 0.

Related links
 String - Unicode

Page 534

ustr(str)
Converting a string to a unicode string ustr(str).

method ustr str.ustr<result> (

)

Return value
The result unicode string.

Related links
 String - Unicode

Page 535

str(ustr)
Converting a unicode string to a string str(ustr).

method str ustr.str<result> (

)

Return value
The result string.

Related links
 String - Unicode

Page 536

ustr.clear
Clearing a unicode string.

method ustr ustr.clear

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 537

ustr.copy
 method ustr ustr.copy(uint ptr, uint size)
 method ustr ustr.copy(uint ptr)

Copying. The method copies the specified size of the data into a unicode string.

method ustr ustr.copy (

 uint ptr,

 uint size

)

Parameters
ptr The pointer to the data being copied. If data does not end in a zero, it w ill be added automatically.

size The size of the data being copied.

Return value
Returns the object w hich method has been called.

ustr.copy
The method copies data into a unicode string.

method ustr ustr.copy(uint ptr)

Parameters
ptr The pointer to the data being copied. All data to the zero ushort w ill be copied.

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 538

ustr.del
Delete a substring.

method ustr ustr.del (

 uint off,

 uint len

)

Parameters
off The offset of the substring being deleted.

len The size of the substring being deleted.

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 539

ustr.findch
 method uint ustr.findch(uint off, ushort symbol)
 method uint ustr.findch(ushort symbol)

Find the character in the unicode string.

method uint ustr.findch (

 uint off,

 ushort symbol

)

Parameters
off The offset to start searching from.

symbol Search character.

Return value
The offset of the character if it is found. If the character is not found, the length of the string is returned.

ustr.findch
Find the character in the unicode string from the beginning of the string.

method uint ustr.findch (

 ushort symbol

)

Parameters
symbol Search character.

Related links
 String - Unicode

Page 540

ustr.fromutf8
Convert a UTF-8 string to a unicode string.

method ustr ustr.fromutf8 (

 str src

)

Parameters
src Source UTF-8 string.

Return value
Returns the object w hich method has been called..

Related links
 String - Unicode

Page 541

ustr.insert
Insertion. The method inserts one unicode string into another.

method ustr ustr.insert (

 uint offset,

 ustr value

)

Parameters
offset The offset w here string w ill be inserted.

value The unicode string being inserted.

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 542

ustr.lines
 method arrustr ustr.lines(arrustr ret, uint flag)
 method arrustr ustr.lines<result>(uint trim)
 method arrustr ustr.lines(arrustr ret)
 method arrustr ustr.lines<result>()

Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines (

 arrustr ret,

 uint flag

)

Parameters
re

t

The result array of unicode strings.

fl

ag

Flags.

$SPLIT_EMPTY Take into account empty substrings.

$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.

Return value
The result array of unicode strings.

ustr.lines
Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines<result> (

 uint trim

)

Parameters
trim Specify 1 if you w ant to trim all characters less or equal space in lines.

Return value
The new result array of unicode strings.

ustr.lines
Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines (

 arrustr ret

)

Parameters
ret The result array of strings.

ustr.lines
Convert a multi-line unicode string to an array of unicode strings.

method arrustr ustr.lines<result>()

Return value
The new result array of unicode strings.

Related links
 String - Unicode

Page 543

ustr.read
Read a unicode string from a file.

method uint ustr.read (

 str filename

)

Parameters
filename Filename.

Return value
The size of the read data.

Related links
 String - Unicode

Page 544

ustr.replace
Replacing in a unicode string. The method replaces data in a unicode string.

method ustr ustr.replace (

 uint offset,

 uint size,

 ustr value

)

Parameters
offset The offset of the data being replaced.

size The size of the data being replaced.

value The unicode string being inserted.

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 545

ustr.reserve
Memory reservation. The method increases the size of the memory allocated for the unicode string.

method ustr.reserve (

 uint len

)

Parameters
len The summary requested length of th eunicode string. If it is less than the current size, nothing happens. If the size is

increased, the current string data is saved.

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 546

ustr.setlen
 method ustr ustr.setlen(uint len)
 method ustr ustr.setlenptr

Setting a new size of the unicode string. The method does not reserve space. You cannot specify the size of a string greater than
the reserved space you have. Mostly, this function is used for specifying the size of a string after external functions w rite data to
it.

method ustr ustr.setlen (

 uint len

)

Parameters
len New string size.

Return value
Returns the object w hich method has been called.

ustr.setlenptr
Recalculate the size of a unicode string to the zero character. The function can be used to determine the size of a string after
other functions w rite data into it.

method ustr ustr.setlenptr

Related links
 String - Unicode

Page 547

ustr.split
 method arrustr ustr.split(arrustr ret, ushort symbol, uint flag)
 method arrustr ustr.split <result> (uint symbol, uint flag)

Splitting a unicode string. The method splits a string into substrings taking into account the specified separator.

method arrustr ustr.split (

 arrustr ret,

 ushort symbol,

 uint flag

)

Parameters
ret The result array of unicode strings.

symb

ol

Separator.

flag Flags.

$SPLIT_EMPTY Take into account empty substrings.

$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.

Return value
The result array of strings.

The method splits a unicode string into the new result array of unicode strings.

method arrustr ustr.split <result> (

 uint symbol,

 uint flag

)

Parameters
symb

ol

Separator.

flag Flags.

$SPLIT_EMPTY Take into account empty substrings.

$SPLIT_NOSYS Delete characters <= space on the left and on the right.

$SPLIT_FIRST Split till the first separator.

$SPLIT_QUOTE Take into account that elements can be enclosed by single or double quotation marks.

$SPLIT_APPEND Adding strings. Otherw ise, the array is cleared before loading.

Return value
The new result array of unicode strings.

Related links
 String - Unicode

Page 548

ustr.substr
Getting a unicode substring.

method ustr ustr.substr (

 ustr src,

 uint start,

 uint len

)

Parameters
src Initial unicode string.

start Substring offset.

len Substring size.

Return value
Returns the object w hich method has been called.

Related links
 String - Unicode

Page 549

ustr.toutf8
Convert a unicode string to UTF-8 string.

method str ustr.toutf8 (

 str dest

)

Parameters
dest Destination string.

Return value
The dest parameter.

Related links
 String - Unicode

Page 550

ustr.trim...
 method ustr ustr.trim(uint symbol, uint flag)
 method ustr ustr.trimrspace()
 method ustr ustr.trimspace()

Trimming a unicode string.

method ustr ustr.trim (

 uint symbol,

 uint flag

)

Parameters
symbo

l

The character being deleted.

flag Flags.

$TRIM_LEFT Trim the left side.

$TRIM_RIGHT Trim the right side.

$TRIM_ONE Delete only one character.

$TRIM_PAIR If the character being deleted is a bracket, look the closing bracket on the right

$TRIM_SYS Delete characters less or equal space.

Return value
Returns the object w hich method has been called.

ustr.trimrspace
Deleting spaces on the right.

method ustr ustr.trimrspace()

ustr.trimspace
Deleting spaces on the both sides.

method ustr ustr.trimspace()

Related links
 String - Unicode

Page 551

ustr.write
Writing a unicode string to a file.

method uint ustr.write (

 str filename

)

Parameters
filename The name of the file for w riting. If the file already exists, it w ill be overw ritten.

Return value
The size of the w ritten data.

Related links
 String - Unicode

Page 552

System
System functions.

 Callback and search features
 Type functions

m ax Determining the largest of tw o numbers.

m in Determining the smallest of tw o numbers.
Callback and search features

callback Create a callback function.

freecallback Free a created callback function.

getid Getting the code of an object by its name.
Type functions

destroy Destroying an object.

new Creating an object.

sizeof Get the size of the type.

type_delete Delete the object as located by the pointer.

type_hasdelete Whether an object should be deleted.

type_hasinit Whether an object should be initialized.

type_init Initiate the object as located by the pointer.

Page 553

max
 func uint max(uint left, uint right)
 func uint max(int left, int right)

Determining the largest of tw o numbers.

func uint max (

 uint left,

 uint right

)

Parameters
left The first compared number of the uint type.

right The second compared number of the uint type.

Return value
The largest of tw o numbers.

max
Determining the largest of tw o int numbers.

func uint max (

 int left,

 int right

)

Parameters
left The first compared number of the int type.

right The second compared number of the int type.

Return value
The largest of tw o int numbers.

Related links
 System

Page 554

min
 func uint min(uint left, uint right)
 func uint min(int left, int right)

Determining the smallest of tw o numbers.

func uint min (

 uint left,

 uint right

)

Parameters
left The first compared number of the uint type.

right The second compared number of the uint type.

Return value
The smallest of tw o numbers.

min
Determining the smallest of tw o int numbers.

func uint min (

 int left,

 int right

)

Parameters
left The first compared number of the int type.

right The second compared number of the int type.

Return value
The smallest of tw o int numbers.

Related links
 System

Page 555

callback
Create a callback function. This function allow s you to use gentee functions as callback functions. For example, gentee function
can be specified as a message handler for w indow s.

func uint callback (

 uint idfunc,

 uint parsize

)

Parameters
idfunc Identifier (address) of gentee function that w ill be callback function.

parsize The summary size of parameters (number of uint values). One parameter uint = 1 (uint = 1). uint + uint = 2, uint +
long = 3.

Return value
You can use the return value as the callback address. You have to free it w ith freecallback function w hen you don't need this
callback function.

Related links
 System

Page 556

freecallback
Free a created callback function.

func freecallback (

 uint pmem

)

Parameters
pmem The pointer that w as returned by callback function.

Related links
 System

Page 557

getid
Getting the code of an object by its name. The function returns the code of an object (function, method, operator, type) by its name
and parameters.

func uint getid (

 str name,

 uint flags,

 collection idparams

)

Parameters
name The name of an object (function, method, operator).

flags Flags.

$GETID_METHOD Search method. Specify the main type of the method as the first parameter in the
collection.

$GETID_OPERATOR Search operator. You can specify the operator in name as is. For example, +=.

$GETID_OFTYPE Specify this flag if you w ant to describe parameters w ith types of items (of type). In
this case, collection must contains pairs - idtype and idoftype.

idpara

ms

The types of the required parameters.

Return value
The code (identifier) of the found object. The function returns 0 if the such object w as not found.

Related links
 System

Page 558

destroy
Destroying an object. Destroying an object created by the function new .

func destroy (

 uint obj

)

Parameters
obj The pointer to the object to be destroyed.

Related links
 System

Page 559

new
 func uint new (uint objtype)
 func uint new (uint objtype, uint oftype, uint count)

Creating an object. The function creates an object of the specified type.

func uint new (

 uint objtype

)

Parameters
objtype The identifier or the name of a type.

Return value
The pointer to the created object.

new
The function creates an object w ith specifing the count and the type of its items.

func uint new (

 uint objtype,

 uint oftype,

 uint count

)

Parameters
objtype The identifier or the name of a type.

oftype The type of object's items.

count The initial count of object's items.

Return value
The pointer to the created object.

Related links
 System

Page 560

sizeof
Get the size of the type.

func uint sizeof (

 uint idtype

)

Parameters
idtype Identifier or the name of the type. The compiler changes the name of the type to its identifier.

Return value
The type size in bytes.

Related links
 System

Page 561

type_delete
Delete the object as located by the pointer. Gentee deletes objects automaticaly. Use this function only if you allocated the memory
for the variable.

func type_delete (

 pubyte ptr,

 uint idtype

)

Parameters
ptr The pointer to the memory space w here the object being deleted is located.

idtype The type of the object.

Related links
 System

Page 562

type_hasdelete
Whether an object should be deleted. Specifies the necessity to call the function type_delete for deleting an object of this type.

func uint type_hasdelete (

 uint idtype

)

Parameters
idtype The type of an object.

Return value
1 is returned if it is necessary to call type_delete, 0 is returned otherw ise.

Related links
 System

Page 563

type_hasinit
Whether an object should be initialized. Specifies the necessity to call the function type_init for initiating an object of this type.

func uint type_hasinit (

 uint idtype

)

Parameters
idtype The type of an object.

Return value
1 is returned if it is necessary to call type_init, 0 is returned otherw ise.

Related links
 System

Page 564

type_init
Initiate the object as located by the pointer. Gentee initializes objects automaticaly. Use this function only if you allocated the
memory for the variable.

func uint type_init (

 pubyte ptr,

 uint idtype

)

Parameters
ptr The pointer to the memory space w here the object being created is located.

idtype The type of the object.

Return value
The pointer to the object is returned.

Related links
 System

Page 565

Thread
This library allow s you to create threads and w ork w ith them. The methods described above are applied to variables of the thread
type. For using this library, it is required to specify the file thread.g (from lib\thread subfolder) w ith include command.

include : $"...\gentee\lib\thread\thread.g"

 Methods
 Functions

Methods

thread.create Create a thread.

thread.getexitcode Get the thread exit code.

thread.isactive Checking if a thread is active.

thread.resum e Resuming a thread.

thread.suspend Stop a thread.

thread.term inate Terminating a thread.

thread.w ait Waiting till a thread is exited.
Functions

exitthread Exiting the current thread.

sleep Pause the current thread for the specified time.

Page 566

thread.create
Create a thread.

method uint thread.create (

 uint idfunc,

 uint param

)

Parameters
idfunc The pointer to the function that w ill be called as a new thread. The function must have one parameter. You can get

the pointer using the operator &.
param Additional parameter.

Return value
The handle of the created thread is returned. It returns 0 in case of an error.

Related links
 Thread

Page 567

thread.getexitcode
Get the thread exit code.

method uint thread.getexitcode (

 uint result

)

Parameters
result The pointer to a variable of the uint type the thread exit code w ill be w ritten to. If the thread is still active, the value

$STILL_ACTIVE w ill be w ritten.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Thread

Page 568

thread.isactive
Checking if a thread is active.

method uint thread.isactive()

Return value
Returns 1 if the thread is active and 0 otherw ise.

Related links
 Thread

Page 569

thread.resume
Resuming a thread. Resume a thread paused w ith the thread.suspend method.

method uint thread.resume()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Thread

Page 570

thread.suspend
Stop a thread.

method uint thread.suspend()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Thread

Page 571

thread.terminate
Terminating a thread.

method uint thread.terminate (

 uint code

)

Parameters
code Thread termination code.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Thread

Page 572

thread.wait
Waiting till a thread is exited.

method uint thread.wait()

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Thread

Page 573

exitthread
Exiting the current thread.

func exitthread (

 uint code

)

Parameters
code Thread exit code.

Related links
 Thread

Page 574

sleep
Pause the current thread for the specified time.

func sleep (

 uint msec

)

Parameters
msec The time for pausing the thread in milliseconds.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Thread

Page 575

Tree
Tree object. The each node of tree object can have a lot of childs. It is required to include tree.g.

include : $"...\gentee\lib\tree\tree.g"

 Operators
 Methods
 Treeitem methods

Operators

tree of type Specifying the type of items.

* tree Get the count of items in a tree.

* treeitem Get the count of childs in the tree item.

foreach var,treeitem Foreach operator.
Methods

tree.clear Delete all items in the tree.

tree.del Deleting an item.

tree.leaf Adding a "leaf".

tree.node Adding a "node".

tree.root Get the root item of a tree.
Treeitem methods

treeitem .changenode Change the parent node of an item.

treeitem .child Get the first child of an item.

treeitem .data Get the pointer to the data stored in an object.

treeitem .getnext Getting the next item to the current tree item.

treeitem .getprev Getting the previous item to the current tree item.

treeitem .isleaf Check if it is a leaf.

treeitem .isnode Check if it is a node.

treeitem .isroot Check if it is a root item.

treeitem .lastchild Get the last child item of the tree item.

treeitem .m ove Move an item.

treeitem .parent Get the parent of an item.

Page 576

tree of type
Specifying the type of items. You can specify of type w hen you describe tree variable. In default, the type of the items is uint.

method tree.oftype (

 uint itype

)

Related links
 Tree

Page 577

* tree
Get the count of items in a tree.

operator uint * (

 tree itree

)

Return value
The count of childs in the tree.

Related links
 Tree

Page 578

* treeitem
Get the count of childs in the tree item.

operator uint * (

 treeitem treei

)

Return value
The count of childs in the tree item.

Related links
 Tree

Page 579

foreach var,treeitem
Foreach operator. You can use foreach operator to look over all items of the treeitem. Variable is a pointer to the child tree item.

foreach variable,treeitem {...}

Related links
 Tree

Page 580

tree.clear
Delete all items in the tree.

method tree tree.clear (

)

Return value
Returns the object w hich method has been called.

Related links
 Tree

Page 581

tree.del
 method tree.del(treeitem item, uint funcdel)
 method tree.del(treeitem item)

Deleting an item. Delete an item together w ith all its child items.

method tree.del (

 treeitem item,

 uint funcdel

)

Parameters
item The item being deleted.

funcdel The custom function that w ill be called before deleting the each item. It can be 0.

tree.del
Delete an item together w ith all its child items.

method tree.del (

 treeitem item

)

Parameters
item The item being deleted.

Related links
 Tree

Page 582

tree.leaf
 method treeitem tree.leaf(treeitem parent, treeitem after)
 method treeitem tree.leaf(treeitem parent)

Adding a "leaf". Add a "leaf" to the specified node. You can not add items to a "leaf".

method treeitem tree.leaf (

 treeitem parent,

 treeitem after

)

Parameters
parent Parent node. If it is 0->treeitem then the item w ill be added to the root.

after Insert an item after this tree item. If it is 0->treeitem then the item w ill be the first child.

Return value
The added item or 0 in case of an error.

tree.leaf
Add a "leaf" to the specified node. An item w ill be the last child item.

method treeitem tree.leaf (

 treeitem parent

)

Parameters
parent Parent node. If it is 0->treeitem then the item w ill be added to the root.

Return value
The added item or 0 in case of an error.

Related links
 Tree

Page 583

tree.node
 method treeitem tree.node(treeitem parent, treeitem after)
 method treeitem tree.node(treeitem parent)

Adding a "node". Add a "node" to the specified node. You can add items to a "node".

method treeitem tree.node (

 treeitem parent,

 treeitem after

)

Parameters
parent Parent node. If it is 0->treeitem then the item w ill be added to the root.

after Insert an item after this tree item. If it is 0->treeitem then the item w ill be the first child.

Return value
The added item or 0 in case of an error.

tree.node
Add a "node" to the specified node. An item w ill be the last child item.

method treeitem tree.node (

 treeitem parent

)

Parameters
parent Parent node. If it is 0->treeitem then the item w ill be added to the root.

Return value
The added item or 0 in case of an error.

Related links
 Tree

Page 584

tree.root
 method treeitem tree.root
 method treeitem treeitem.getroot()

Get the root item of a tree.

method treeitem tree.root

Return value
Returns the root item of the tree.

treeitem.getroot
Get the root item of a tree.

method treeitem treeitem.getroot()

Return value
Returns the root item of the tree.

Related links
 Tree

Page 585

treeitem.changenode
Change the parent node of an item.

method uint treeitem.changenode (

 treeitem treei

)

Parameters
treei New parent node.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Tree

Page 586

treeitem.child
Get the first child of an item.

method treeitem treeitem.child()

Return value
Returns the first child item or 0 if there is none.

Related links
 Tree

Page 587

treeitem.data
Get the pointer to the data stored in an object.

method uint treeitem.data()

Return value
Returns the pointer to the data.

Related links
 Tree

Page 588

treeitem.getnext
Getting the next item to the current tree item.

method treeitem treeitem.getnext()

Return value
Returns the next item.

Related links
 Tree

Page 589

treeitem.getprev
Getting the previous item to the current tree item.

method treeitem treeitem.getprev()

Return value
Returns the previous item.

Related links
 Tree

Page 590

treeitem.isleaf
Check if it is a leaf. The method checks if an item is a "leaf" (if it cannot have child items).

method uint treeitem.isleaf

Return value
Returns 1 if this item is a tree "leaf" and 0 otherw ise.

Related links
 Tree

Page 591

treeitem.isnode
Check if it is a node. The method checks is an item can have child items.

method uint treeitem.isnode

Return value
Returns 1 if this item is a tree "node" and 0 otherw ise.

Related links
 Tree

Page 592

treeitem.isroot
Check if it is a root item. The method checks if an item is a root one.

method uint treeitem.isroot

Return value
Returns 1 if this item is a root one and 0 otherw ise.

Related links
 Tree

Page 593

treeitem.lastchild
Get the last child item of the tree item.

method treeitem treeitem.lastchild()

Return value
Returns the last child item or 0 if there is none.

Related links
 Tree

Page 594

treeitem.move
 method uint treeitem.move(treeitem after)
 method uint treeitem.move(treeitem target, uint flag)

Move an item.

method uint treeitem.move (

 treeitem after

)

Parameters
after The node to insert the item after. Specify 0 if it should be made the first item.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

treeitem.move
Move an item.

method uint treeitem.move (

 treeitem target,

 uint flag

)

Parameters
target The node to insert the item after or before depending on the flag.

flag Move flag.

$TREE_FIRST The first child item of the same parent.

$TREE_LAST The last child item of the same parent.

$TREE_AFTER After this item.

$TREE_BEFORE Before this item.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 Tree

Page 595

treeitem.parent
Get the parent of an item.

method treeitem treeitem.parent()

Return value
Returns the parent of this item.

Related links
 Tree

Page 596

XML
XML file processing. This library is used for XML file processing and XML tree building. Neither a multibyte-character set nor a
document type description <!DOCTYPE> are handled in the current version. For using this library, it is required to specify the
file xml.g (from lib\xml subfolder) w ith include command.

include : $"...\gentee\lib\xml\xml.g"

 Operators
 Methods
 Methods of XML tree items

XML description A brief description of XML library.
Operators

foreach var,xm litem Foreach operator.
Methods

xm l.addentity Adds an entity description.

xm l.getroot Gets the root item of the XML document tree.

xm l.procfile Process an XML file.

xm l.procstr Processes a string contained the XML document.
Methods of XML tree items

xm litem .chtag Gets a tag item w ith the help of a "path".

xm litem .findtag Search for a tag item by the name.

xm litem .getattrib Gets a tag item attribute value.

xm litem .getchild Gets the first child item of the current item.

xm litem .getchildtag Gets the first child tag item.

xm litem .getchildtext Gets the first child text item.

xm litem .getnam e Gets the name of the XML item.

xm litem .getnext Gets the next item.

xm litem .getnexttag Gets the next tag item.

xm litem .getnexttext Gets the next text item.

xm litem .getparent Gets the parent item of the current item.

xm litem .gettext Gets a text of the current item in the XML tree.

xm litem .isem ptytag Determines if the item is an empty tag item.

xm litem .ispitag Checks if the item is a tag processing instruction.

xm litem .istag Determines if the current item is a tag item.

xm litem .istext Determines if the current item is a text item.

Page 597

XML description
A brief description of XML library. Variables of either the xm l and the xm litem type (an XML tree item) are used for processing
XML documents. An XML tree item can be of tw o types: a text item and a tag item . There are several types of tag items:

 tag item that contains other items <tag ...>.....</tag>;
 tag item that contains no other items <tag .../>;
 tag item of processing instruction <?tag ...?>.

A tag item may contain attributes.

The sequence of operations for processing an XML document:

 process a document (build an XML tree) w ith the help of the xml.procfile method or the xml.procstr method;
 add entity definitions, using the xml.addentity method if necessary;
 search for the required items in the XML tree using the follow ing methods: xml.getroot, xmlitem.chtag, xmlitem.findtag,

xmlitem.getnext, etc.;
 use the foreach statement in order to process similar elements if necessary;
 gain access to tag attributes w ith the help of the xmlitem.getattrib method and get a text using the xmlitem.gettext method.

Related links
 XML

Page 598

foreach var,xmlitem
Foreach operator. Looking through all items w ith the help of the foreach operator. Defining an optional variable of the xm ltags
type is required. The foreach statement is used for variables of the xm litem type and goes through all child tag items of the
current tag.

xmltags xtags

xmlitem curtag

...

foreach xmlitem cur, curtag.tags(xtags)

{

 ...

}

foreach variable,xmlitem.tags(xmltags) {...}

Related links
 XML

Page 599

xml.addentity
Adds an entity description. The entity must have been described before the gettext method is called. Below you can see the list of
entities described by default:
& - &;
" - ";
' - ';
> - >;
< - <;

method xml.addentity (

 str key,

 str value

)

Parameters
key Key (an entity name - &entity_nam e;).

value Entity value is a string that w ill be pasted into the text.

Related links
 XML

Page 600

xml.getroot
Gets the root item of the XML document tree. Actually, a root item contains all items of an XML document tree only.

method xmlitem xml.getroot()

Return value
Returns a root item.

Related links
 XML

Page 601

xml.procfile
Process an XML file. Reads the XML file, the name of w hich is specified as a parameter, and process it.

method uint xml.procfile (

 str filename

)

Parameters
filename Name of the file processed.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 XML

Page 602

xml.procstr
Processes a string contained the XML document.

method uint xml.procstr (

 str src

)

Parameters
src XML data string.

Return value
If the function succeeds, the return value is 1. If the function fails, the return value is 0.

Related links
 XML

Page 603

xmlitem.chtag
Gets a tag item w ith the help of a "path". Searches through the XML tree for a tag item w ith the help of the specified "path". A
"path" consists of tag names separated by the '/' character, if the first character in a path is the '/' character, the item search
begins from the tree root; otherw ise - from the current item.

method xmlitem xmlitem.chtag (

 str path

)

Parameters
path Path of the item.

Return value
Returns the item obtained or zero, if no item has been found.

Related links
 XML

Page 604

xmlitem.findtag
Search for a tag item by the name. Searches through the XML tree for a tag item w ith the specified name. The item is searched
recursively through all child items.

method xmlitem xmlitem.findtag (

 str name

)

Parameters
name Name of the required tag.

Return value
Returns the item obtained or zero, if no item has been found.

Related links
 XML

Page 605

xmlitem.getattrib
Gets a tag item attribute value.

method str xmlitem.getattrib (

 str name,

 str result

)

Parameters
name Attribute name.

result Result string.

Return value
Returns the string that contains the attribute value. If no attribute has been found, it returns an empty string.

Related links
 XML

Page 606

xmlitem.getchild
Gets the first child item of the current item.

method xmlitem xmlitem.getchild()

Return value
Returns the child item or zero, if the item does not contain any child items.

Related links
 XML

Page 607

xmlitem.getchildtag
Gets the first child tag item. This method is similar to the xmlitem.getchild method; how ever, if the child item is not a tag item, in this
case, the tag item that comes first is searched through the child items.

method xmlitem xmlitem.getchildtag()

Return value
Returns the child tag item or zero, if the item does not contain any child tag items.

Related links
 XML

Page 608

xmlitem.getchildtext
Gets the first child text item. This method is similar to the xmlitem.getchild method; how ever, if the child item is not a text item, in this
case, the text item that comes first is searched through the child items.

method xmlitem xmlitem.getchildtext()

Return value
Returns the child text item or zero, if the item does not contain any child text items.

Related links
 XML

Page 609

xmlitem.getname
Gets the name of the XML item.

method str xmlitem.getname (

 str res

)

Parameters
res Result string.

Return value
Returns the parameter res .

Related links
 XML

Page 610

xmlitem.getnext
Gets the next item. How ever, the next item must be searched through the items w ith the same parent item.

method xmlitem xmlitem.getnext()

Return value
Returns the next item or zero, if the item is the last item.

Related links
 XML

Page 611

xmlitem.getnexttag
Gets the next tag item. This method is similar to the xmlitem.getnext method, but if the next item is not a tag item, this operation
repeats.

method xmlitem xmlitem.getnexttag

Return value
Returns the next tag item or zero, if the item is the last item.

Related links
 XML

Page 612

xmlitem.getnexttext
Gets the next text item. This method is similar to the xmlitem.getnext method, but if the next item is not a text item, this operation
repeats.

method xmlitem xmlitem.getnexttext()

Return value
Returns the next text item or zero, if the item is the last item.

Related links
 XML

Page 613

xmlitem.getparent
Gets the parent item of the current item.

method xmlitem xmlitem.getparent()

Return value
Returns the parent item or zero, if the current item is the root item.

Related links
 XML

Page 614

xmlitem.gettext
Gets a text of the current item in the XML tree. This method is applied either to a text item or a tag item, in the latter case, the text is
obtained from the child text item.

method str xmlitem.gettext (

 str result

)

Parameters
result Result string.

Return value
Returns the string that contains the text of the item. If no text has been found, it returns an empty string.

Related links
 XML

Page 615

xmlitem.isemptytag
Determines if the item is an empty tag item. Determines if the current item is a tag item, that contains no child items <tag .../>;.

method uint xmlitem.isemptytag()

Return value
Returns nonzero if the item is a tag item, that contains no child items; otherw ise, it returns zero.

Related links
 XML

Page 616

xmlitem.ispitag
Checks if the item is a tag processing instruction. Determines if the current item is a tag of processing instruction <?tag ...?>.

method uint xmlitem.ispitag()

Return value
Returns nonzero if the item is a tag of processing instruction, otherw ise, it returns zero.

Related links
 XML

Page 617

xmlitem.istag
Determines if the current item is a tag item.

method uint xmlitem.istag()

Return value
Returns nonzero if the item is a tag item; otherw ise, it returns zero.

Related links
 XML

Page 618

xmlitem.istext
Determines if the current item is a text item.

method uint xmlitem.istext()

Return value
Returns nonzero if the item is a text item; otherw ise, it returns zero.

Related links
 XML

Page 619

Samples
Welcome to Gentee Programming Language! This tutorial w ill help you master our programming language by using
easy-to-understand examples.

You should have some familiarity w ith computers. But it is not essential to have extensive experience in programming or to know
any other computer languages. In fact, these lessons w ere w ritten under the assumption that you have little or no programming
skills.

The tutorial begins w ith basic concepts and then builds on them w ith more complex lessons. If a lesson is too simple for you, skip
over it! If you're a novice, take things step-by-step.

This tutorial does not concentrate primarily on the syntax and semantics of Gentee Programming Language. (Information about this
can be found in the documentation.) Instead, the tutorial concentrates on the development of language skills by developing
softw are solutions to practical computing problems. Furthermore, each lesson includes a self-study exercise for independent
w ork. We feel that programming skills are best acquired through practice. Therefore, w e recommend that you complete the
exercises.

Each lesson features source code that w ill help you understand how to develop programming solutions. If developing solutions
seems daunting, carefully examine the source code for hints about how the program w orks. These source programs are located
in the Sam ples subdirectory of the Gentee distribution kit.

hello A simple program outputs a string to a console.

square Ñalculating the area and the perimeter of a rectangle and of a circle.

easym ath Finding the greatest common divisor, factorial and the Fibonacci numbers.

prim enum ber Calculate primes using "The Sieve of Eratosthenes".

fileattrib Set or remove the attributes of the files a read-only file.

runini Using INI files

easyhtm l Display a color palette as HTML, w hich is frequently used for creating an HTML page.

calendar Create a month calendar, selected by a user, in HTML format.

sam efiles Find all files w hich have the same contents either in the required folder or in a drive.

If you encounter difficulty, send us an e-mail and w e w ill try to help you troubleshoot the problem. If your problem provides a
useful lesson for others, w e w ill seek your permission to disassemble the program and release it to others to provide them w ith
better understanding.

Page 620

hello
There is a tradition in programming tutorials to show the code that prints "Hello, World!" on the computer screen. We w ill adhere to
that tradition by show ing you the Gentee code that produces "Hello World:"

Example 1
func hello <main>

{

 print("Hello, World!")

 getch()

}

To understand how the code displays the results printed on your screen, you need to understand certain concepts.

The "Hello World" printed on the screen is called a "function." A function is a type of procedure or routine that performs a specific
task. Some programming languages make a distinction betw een a function, w hich returns a value, and a procedure, w hich
performs a specific task but does not return a value In the case of Gentee, functions are denoted by the operation set that
performs any task.

Functions can be called from other ones. Functions are described by the keyw ord func in Gentee. The function w ith the name
hello and the attribute m ain have just been mentioned, the attribute means that this function w ill be run after loading the program.

print("Hello, World!")

print is a function call outputting the specified string.

A string is a series of characters manipulated as a group. A character string is often specified by enclosing the characters in
quotes. For example, WASHINGTON w ould be a name, but "WASHINGTON" w ould be character strings. In Gentee, strings are
enclosed in double quotes. In other w ords, the quote marks help you define a string.

After w e designate a character string, w e call another function getch that results in a keystroke delay.

More information about this coding can be found in the documentation. In the lessons you can also find information about other
functions and methods.

Now , let's talk about strings. There is a command character '\', that performs some actions depending on the follow ing characters.
This example demonstrates some of them:

\n represents a new line.
\\ represents the symbol: backslash '\'.

In addition to this, Gentee saves line feeds w ithin the string. A line feed is a code that moves the cursor on a display screen dow n
one line. In the example below , the follow ing strings are equivalents.

"Hello, World!

Hello, World!"

"Hello, World!\nHello, World!"

Exercise 2
Make a program "Hello, World!" that prompts the user to press any key.

Page 621

square
You w ill get acquainted w ith numbers in this lesson. We w ill first try to make a program to calculate the area of a rectangle and of
a circle. We w ill use numbers w ith double precision (double type). Double precision refers to a type of floating-point number that
has more precision, or more digits to the right of the decimal point, than a single-precision number.

To begin w ith, create a framew ork of the function.

func main<main>

{

 while 1

 {

 print("Enter the number of the action:

1. Calculate the area of a rectangle

2. Calculate the area of a circle

3. Exit\n")

 switch getch()

 {

 case '1'

 {

 print("Specify the width of the rectangle: ")

 print("Specify the height of the rectangle: ")

 }

 case '2'

 {

 print("Specify the radius of the circle: ")

 }

 case '3', 27 : break

 default : print("You have entered the wrong value!\n\n")

 }

 }

}

There are tw o new statements here: w hile and sw itch.

The w hile statement repeats the execution of a code, w hile the conditional expression is nonzero. In this case, the condition
equals 1, that means an endless loop and the command break ,as defined below , causes an exit from the loop.

A loop is one of the three basic logic structures in computer programming. The other tw o logic structures are selection and
sequence.

The sw itch operator evaluates an expression and looks for the value through the values. case . While the program is w aiting for
the keystroke, a user thinks of further actions. Now let's take a look at the follow ing line:

case '3', 27 : break

Notice that the possible values separated by commas are enumerated in case . 27 determines the key code Esc. As for the symbol
':', it is denoted by the follow ing line enclosed in braces. In other w ords, this fragment is equivalent to the follow ing one:

case '3', 27 { break }

The use of braces is often required by Gentee, a usage of the symbol ':' helps you escape piling characters in simple tasks.

To perform calculations w e use a string type of a variable for the return values and a double type of tw o variables in order to
store values. You can start by appending:

str input

double width height

Variables of the same type are separated by a comma or a single space.

Now you can perform calculations and get answ ers. So, to calculate the area of a rectangle w e could construct code like this:

print("Specify the width of the rectangle: ")

width = double(conread(input))

print("Specify the height of the rectangle: ")

height = double(conread(input))

print("The area of the rectangle: \(width * height)\n\n")

The conread function reads data input by a user. The \(...) operation w ithin the string evaluates the expression enclosed in
brackets and inserts data into the string.

Page 622

To calculate the area of a circle, w e can create another example similar to the code, above:

print("Specify the radius of the circle: ")

width = double(conread(input))

print("The area of the circle: \(3.1415 * width * width)\n\n")

Exercise 2
Write a program that calculates the perimeter of a rectangle and of a circle. Use a separate function for the perimeter of each
shape.

Page 623

easymath
Example 1
Now w e w ill analyze an example that finds the greatest common divisor of tw o numbers (GCD).

We take advantage of Euclid's Algorithm for the task solution. It w orks like this:

GCD(x, y) = x if y equals 0 and
GCD(x, y) = GCD(y, x MOD y) if y is nonzero.

x MOD y is the remainder of values.
In other w ords, dividing tw o numbers w e compute the remainder of the values but if the remainder is nonzero, the second number
and the remainder of the values must be considered, etc.

The follow ing fragment provides an obvious example of recursion, that's used to have a function call itself from w ithin itself.
This function is w ritten like this:

func uint gcd(uint first second)

{

 if !second : return first

 return gcd(second, first % second)

}

% is used to divide tw o numbers and returns the remainder.
uint is a type designating a positive integer.
if is a conditional statement show n in the follow ing example:

if condition {

}

elif condition {

}

else {

}

Note: An infinite number of elif blocks can be used. If the condition is TRUE, statements in braces follow ing this condition w ill be
executed.

Finally, it is time to w rite the main function that can receive the data from the user and call gcd. The function contains the follow ing
loop:

while 1

{

 first = uint(congetstr("Enter the first number (enter 0 to exit): ",

input))

 if !first : break

 second = uint(congetstr("Enter the second number: ", input))

 print("GCD = \(gcd(first, second))\n\n")

}

congetstr is a function provided by standard libraries, it outputs a text to the screen and receives the data from the user.

Example 2
Calculate a factorial n! for n from 1 to 12. A factorial determines the product of numbers up to the given number inclusive.

The follow ing program demonstrates its task solution:

func uint factorial(uint n)

{

 if n == 1 : return 1

 return n * factorial(n - 1)

}

func main<main>

{

 uint n

 print("This program calculates n! (1 * 2 *...* n) for n from 1 to 12\n\n"

)

 fornum n = 1, 13

 {

 print("\(n)! = \(factorial(n))\n")

Page 624

 }

 getch()

}

The fornum loop is executed w hile the counter variable "n" is considered less than the value of the second expression. The loop
counter increases by increments of 1 at each step. fornum is a special case of the for operator - more on that later.

for counter = expression,expression,change of the value of counter

{

}

Exercise 3
Now w e need to calculate the Fibonacci numbers.

These are a series of w hole numbers in w hich each number is the sum of the tw o preceding numbers. Beginning w ith 0 and 1, the
sequence of Fibonacci numbers w ould be 0,1,1, 2, 3, 5, 8, 13, 21, 34, etc. using the formula: n = n(-1) + n(-2), w here the n(-1)
means "the last number before n in the series" and n(-2) refers to "the second last one before n in the series."

We w ill calculate until the last number exceeds 2000000000. Use a recursive function.
X0 = 1
X1 = 1
...
Xn = Xn-1 + Xn-2

Exercise 4
Perform the previous task w ithout the use of recursion.

Page 625

primenumber
Example 1
Calculate primes using "The Sieve of Eratosthenes".

Now w e w ill explain the task.

Primes are products of tw o numbers. In other w ords, a prime is divisible only by itself or 1. So, calculating primes by means of
"The Sieve of Eratosthenes" is done like this:

We start w ith a list of candidates containing numbers from 2 to the definite number. 2 is a prime. We remove all even numbers from
the list. Now , w e w ill take 3 and remove all the numbers that are products of it. After this, w e find the next number from the
candidate list. This number is 5, then w e remove the fifth numbers from the list, etc. Therefore, w hen the candidate list is empty,
the result list w ill contain all the primes.

Let's break the problem into tw o steps. The first step takes advantage of the algorithm, and the second step outputs the results to
the screen.

str input

uint high i j

print("This program uses \"The Sieve of Eratosthenes\" for finding prime

numbers.\n\n")

high = uint(congetstr("Enter the high limit number (< 100000): ", input))

if high > 100000 : high = 100000

arr sieve[high + 1] of byte

fornum i = 2, high/2 + 1

{

 if !sieve[i]

 {

 j = i + i

 while j <= high

 {

 sieve[j] = 1

 j += i

 }

 }

}

To begin w ith, a user should enter the number w hich is defined as the final candidate in the list. We w ant all primes below 100000
in order to not use a lot of resources.

arr sieve[high + 1] of byte

sieve is a description of an array of bytes. And array is a series of objects, all of w hich are the same size and type. Each object in
an array is called an array element. For example, you could have an array of integers or an array of characters or an array of
anything that has a defined data type. The important characteristics of an array are that (1) Each element has the same data type
(although they may have different values). (2) The entire array is stored contiguously in memory.

The first element in the array is the 0th element, therefore let's set 1 to this number. Actually, arrays and variables are zero-based.
So, if an element of the array equals 0, then this based number is not removed. If w e remove it, w e'll set 1 to this number.

For the fornum loop w e use only half of the numbers. Why do w e do this? Think it over. Then w e apply the algorithm. As you can
see, it takes up several strings. Let us jump into an example that illustrates how it w orks:

j += i

This is an extension of the j variable to i. Similar operations are applied for the multiplication, the division, the subtraction.

The numbers has already been removed; let's now jump to the second step.
It is certainly possible that the numbers are output to the screen, nevertheless let's save a file.

j = 0

input.setlen(0)

fornum i = 2, high + 1

{

 if !sieve[i]

Page 626

 {

 input.out4("%8u", i)

 if ++j == 10

 {

 j = 0

 input += "\l"

 }

 }

}

input.write("prime.txt")

shell("prime.txt")

To find out more about the out4 method, read the documentation. In this case each number is extended to eight symbols by
spaces. Furthermore, after outputting each tenth number w e start a new line. The j variable performs it.

A combination of carriage return '\r' and new line '\n' is used for line feed in text files. In Gentee there's only '\l' command w hich
executes it.

The w rite method w rites the string to the file, and the function shell opens this specified file in the appropriate application.

Page 627

fileattrib
This lesson focuses on files.

Example 1
Set or remove the attributes of the files a read-only file . This program accepts command line parameters. The files can be stored
in templates, using the follow ing operators: '*' and '?'. The '*' operator defines any sequence of characters, '?' represents a single
character.
Thus,
c:\temp*.* - all files in the folder c:\temp
c:\temp*.exe - all files w ith the extension exe in the folder c:\temp
c:\temp\a*.* - all files beginning w ith 'a' in the folder c:\temp
c:\temp\ab?*.* - all files beginning w ith 'ab' and one other character in the folder c:\temp

So, w e start w ith command line. It is fairly easy, because of tw o functions: argc returns the number of arguments, argv returns
the required parameter. The first parameter must be the w ord on or off for setting or removing the attribute, the second parameter
must be the template for file processing. So, w e can do it like this:

if argc() > 1

{

 if argv(temp, 1) %== "on" : mode = 1

 elif argv(temp, 1) %== "off" : mode = 2

 argv(path, 2)

}

The '%==' operator produces a line-by-line comparison ignoring the characters' case. Here, you can w rite ON as w ell as Off.

If the parameters have not been indicated by the time the program starts or you typed ones that are not valid, give a chance to
input necessary information on the console.

if !mode

{

 mode = conrequest("Choose an action (press a number key):

1. Turn on readonly attribute

2. Turn off readonly attribute

3. Exit\n", "1|2|3") + 1

 if mode == 3 : return

 congetstr("Specify a filename or a wildcard: ", path)

}

Here the user has to type: 1 to set the attribute, 2 to remove it and 3 to exit the program. The conrequest function w aits for the
keystroke, then returns the number of the selected variant from 0.
For example,

conrequest("Press #'Y#' or #'N#'", "Yy|Nn")

OK. Now w e proceed to the task solution. The ffind structure searches for the specified filename. Let's describe and initialize the
variable fd of type ffind.

fd.init(path, $FIND_FILE | $FIND_RECURSE)

$FIND_FILE points to the search of specified filenames.
$FIND_RECURSE indicates the search of specified filenames in all subdirectories.

For instance,

fd.init("c:\\temp.txt", $FIND_FILE | $FIND_RECURSE)

w ith the specified flag $FIND_RECURSE w ill search for the filename: temp.txt on the entire C: drive.

The foreach operator is used for file searching:

foreach cur,fd

{

 attrib = getfileattrib(cur.fullname)

 if mode == 1 : attrib |= $FILE_ATTRIBUTE_READONLY

 else : attrib &= ~$FILE_ATTRIBUTE_READONLY

 setfileattrib(cur.fullname, attrib)

 print("\(cur.fullname)\n")

}

finfo is a type that stores information about files. More information about this can be found in Help.
cur is a variable of the specified type w hich contains the stored information about any file that has been found.

Page 628

Now , I w ould like to say a few w ords about loop content. We obtain the current file attributes

attrib = getfileattrib(cur.fullname)

According to conditions w e set or remove the attribute of the file a read-only file . Other attributes are saved.

if mode == 1 : attrib |= $FILE_ATTRIBUTE_READONLY

else : attrib &= ~$FILE_ATTRIBUTE_READONLY

We w rite the modified attributes of the file.

setfileattrib(cur.fullname, attrib)

Page 629

runini
Now w e try to automate the EXE files created using the ge2exe program, w hich is integrated into the compiler. This lesson
describes the procedure mentioned above, making it easier for users to create the EXE files.

Example 1
. Let INI-file be a file, w hich contains the information about programs in the Gentee language. We have to help users choose a
program from the given list, compile it and create the EXE file, if necessary.

We start w ith the description of the INI-file format. Each section denotes a program and consists of the follow ing fields:
Nam e is the name of a program.
Src is the .g file of a program.
Exe - to create the EXE file or not (If the field contains a 1 or a 0).
Run - to run the program after successful compilation or not.
Output - If you w ant to change the last file name or store it in the other directory, you should enter the specified file name and its
path here.

Note that the Src is a required field.

[ID2]

Name = Square

Src = ..\square\square.1.g

Exe = 0

The INI-file can be changed; it`s up to you. Moreover, you can add elements. Take a look at the runini.ini file used as an example
in the sam ples\runini subdirectory.

The ini.g library is required to deal w ith the INI-file. So, let`s include the library by using the include command. To illustrate this,
assume that these examples are located in the subdirectory sam ples , so w e use the relative path. If you w ould like to carry this
example to another directory, you should enter the absolute path.

include : $"..\..\lib\ini\ini.g"

The string w ith the initial dollar sign '$' does not contain any command characters, how ever it may contain macros. It is interesting
to note that the use of such strings makes it easier to define the path to the files, because there is no need to double the '\' sign.

Let's w rite tw o auxiliary functions.

func uint openini(ini retini)

The openini function reads data from the runini.ini - file; but if the file is not available, the error message is displayed. If you w ant
to get the error code, take a look at the source program.

func uint idaction(ini retini, str section)

This function is considered to be significant. It calls the program that can compile and create the exe-file. The first argument is the
file object ini, the second one is the name of the section that should be launched.

The follow ing statements read the field values.

retini.getvalue(section, "Src", src, "")

if !*src

{

 congetch("ID '\(section)' is not valid. Press any key...\n")

 return 0

}

run = retini.getnum(section, "Run", 1)

exe = retini.getnum(section, "Exe", 0)

retini.getvalue(section, "Output", outname, "")

Note that the last argument of the getvalue and the getnum functions defines the value, if this field isn't defined in the INI-file.

Using the options from the INI-file, the follow ing code generates command lines in order to start up the compiler and ge2exe. The
process function makes the programs start up. The "." directive, as the second argument of the process function, indicates that
gentee.exe and ge2exe.exe w ill use the current directory as their w orking directory.

if exe

{

 process("..\\..\\exe\\gentee.exe -p samples \(src)", ".", &result)

 src.fsetext(src, "ge")

 process("..\\..\\exe\\ge2exe.exe \(src)", ".", &result)

 deletefile(src)

 src.fsetext(src, "exe")

Page 630

 if run : process(src, ".", &result)

}

else : shell(src)

Let us jump into an example that illustrates the function body, w hich displays a list of possible programs and receives the program
name chosen by a user:

ini tini

arrstr sections

str name src section

openini(tini)

tini.sections(sections)

while 1

{

 print("-----------\n")

 foreach cur, sections

 {

 tini.getvalue(cur, "Src", src, "")

 if !*src : continue

 tini.getvalue(cur, "Name", name, src)

 print("\(cur)".fillspacer(20) + name + "\n")

 }

 print("-----------\n")

 congetstr("Enter ID name (enter 0 to exit): ", section)

 if section[0] == '0' : break

 idaction(tini, section)

}

First, w e read the INI-file and get the section list contained in a string array. After the program list is displayed in a w indow , a user
should choose a program name. Then, w e call the idaction function w ith the required program name.

Here, the follow ing string is described in detail.

print("\(cur)".fillspacer(20) + name + "\n")

The fillspacer method appends a specified number of space characters onto the end of the string. As you can see, w e call the
method on the string enclosed in double quote marks. Note, that in Gentee a string enclosed in double quote marks is the same
object as a variable of type str. Furthermore, w e can call methods on functions and other methods, w hich return strings.
For example, the expression given below appends ten space characters onto the end of the string, thus increasing the string's
length to 30 characters.

"ID: \(cur)".fillspacer(20).fillspacel(30)

Exercise 2
Write a program using runini.1.g, that gets a program-section name from a command line and runs it. If no command-line argument
is specified, this program must w ork like the program discussed above.

Tip: my program consists of 14 lines. For more details about this, read runini.2.g.

Page 631

easyhtml
This lesson presents one type of function, the text function. As its name suggests, this type of function deals w ith texts. Unlike
other functions, a text w ith built-in code serves as the basis for text functions.

Example 1
Display a color palette, w hich is frequently used for creating an HTML page. Save data as an HTML file.

First, determine the number of colors displayed in one line using the define command.

define {

 lcount = 12

}

Note that such constant quantities are called macros. The dollar sign '$' is used before the name in order to run them.
Let's tackle the last point first.

func color< main >

{

 str out

 out @ colorhtm()

 out.write("color.htm")

 shell("color.htm")

}

out @ colorhtm()

As you can see, the result of the colorhtm text function is output to the out string. Using the follow ing commands, w e save the
obtained string to the file w hich is opened in the brow ser w indow . In our example, ellipses are substituted for the title and the end
of the html file.
text colorhtm

...

\{

 int vrgb i j k

 uint cur

 subfunc outitem

 {

 str rgb

 rgb.out4("%06X", vrgb)

 @ item(rgb)

 if ++cur == $lcount

 {

 @"</TR><TR>"

 cur = 0

 }

 }

 for i = 0xFF, i >= 0, i -= 0x33

 {

 for j = 0xFF, j >= 0, j -= 0x33

 {

 for k = 0xFF, k >= 0, k -= 0x33

 {

 vrgb = (i << 16) + (j << 8) + k

 outitem()

 }

 }

 }

 for vrgb = 0xFFFFFF, vrgb >= 0, vrgb -= 0x111111 : outitem()

 for vrgb = 0xFF0000, vrgb > 0, vrgb -= 0x110000 : outitem()

 for vrgb = 0x00FF00, vrgb > 0, vrgb -= 0x001100 : outitem()

 for vrgb = 0x0000FF, vrgb > 0, vrgb -= 0x000011 : outitem()

}

...

\!

Page 632

The \{...} command is used to insert the code into a text. outitem minorant function is defined like thisas:

rgb.out4("%06X", vrgb)

@ item(rgb)

Here, using the local variable named vrgb, the string is created that contains the hexadecimal representation, then another text
function item is called for outputting the cell w ith the indicated color. The unary operator @ is used to output into the current string
or, if there is no string to the console. Then, w e determine the total number of cells in the row and add a new row to the table
w here approriate.

We use three embedded color cycles for searching possible values. Red, green or blue color components are affected by color
cycling. Then these color components are arranged in the vrgb variable and w e call the minorant function described above.

The next four color cycles display additional palette entries for gray, red, green and blue colors.
The \! command indicates the termination of a text function. By default, a text function w orks until the end of the file.

Let's take an example - a text function of cell entries.
We w ant a function that w orks like this:

text item(str rgb)

<TD ALIGN=CENTER><TABLE BGCOLOR=#\(rgb) WIDTH=60><TR><TD> </TD></TR></TABLE>

\(rgb)

</TD>

\!

As you can see, this is an HTML text that outputs the rgb color parameter. It is used as the background color of a table cell and for
the display of its value output under the table cell.

Exercise 2
Create a HTML file that contains the multiplication table.

Page 633

calendar
This lesson provides you w ith a little more practice w ith the text function.

Example 1
Create a month calendar, selected by a user, in HTML format.

We're betting that this example w ill make a lot more sense to you. So, how w ould w e do this? Let's use the main function from the
previous example and modify it; that is, a user enters the year required for creating a calendar.

congetstr("Enter a year: ", year)

out @ calendar(uint(year))

out.write("calendar.htm")

shell("calendar.htm")

Now , w e describe a variable of datetim e type in the calendar text function and set January 1 of the specified year into this
variable. Then w e output the title of the HTML file and start creating the calendar.

text calendar(uint year)

\{ datetime stime

 stime.setdate(1, 1, year)

}<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML><HEAD><TITLE>Calendar for year \(stime.year)</TITLE>

<STYLE TYPE="text/css">

<!--

BODY {background: #FFF; font-family: Verdana;}

H1 {text-align: center; margin: 5px;}

TABLE {border: 0; border-spacing: 7px;}

TD {padding: 3px; border: 1px solid; text-align: center;}

#copy {font-size: smaller; text-align: center;}

-->

</STYLE>

</HEAD>

<BODY><H1>\(stime.year)</H1>

<TABLE ALIGN=CENTER>

Notice that this calendar contains three columns and four row s. The first day of the w eek is stored w ith the help of the firstday
variable for the customer. dayofw eek returns the day number for the current date value. The nam eofm onth function returns
the name of the month in a user language.

firstday = firstdayofweek()

dayofweek = stime.dayofweek

fornum i = 0, 4

{

 @"\l<TR>"

 fornum j = 1, 4

 {

 month = i * 3 + j

 @"\l<TD>\(nameofmonth(stemp, month))

<PRE>"

 ...

 }

}

Now that w e have defined it, w e can use abbrnam eofday function to obtain the abbreviated day name. It is essential to add
missing space characters, because the calendar includes characters w hich have the identical w idth. So, let's use each day name
w ith four characters.

fornum k = firstday, firstday + 7

{

 @" \(abbrnameofday(stemp, k).setlen(2))"

}

@" \l"

@" ".repeat((7 + dayofweek - firstday) % 7)

If dayofw eek function has the value 0, any Sunday is highlighted using red color. Our attention is turned to line feeds added after
the last day of the w eek. The number of strings output is stored in the lines variable in the follow ing w ay:

uint day = 1

Page 634

uint lines

while day <= daysinmonth(year, month)

{

 if !dayofweek : @""

 @str(day++).fillspacel(4)

 if !dayofweek : @""

 dayofweek = (dayofweek + 1) % 7

 if dayofweek == firstday

 {

 @" \l"

 lines++

 }

}

Finally, the space characters are inserted into the last string and the missing row s are output in order to create the months w ith
the identical height.

@" ".repeat((7 + firstday - dayofweek) % 7)

while lines++ < 7 : @" \l"

@"</PRE>"

Frankly speaking, this task is difficult to comprehend because it provides a w ealth of HTML texts and extra formatting. On the other
hand, w e finally succeed in w riting this program.

Page 635

samefiles
This lesson focuses on file processing. Let's find the duplicate files on your computer. Moreover, w e try to make this task
enjoyable and useful, i.e. w e w ill find the duplicate files using their contents, but their names are not required. Well, I suppose you
w ill be astonished by the results, w hen these operations have been completed.

Example 1
Find all files w hich have the same contents either in the required folder or in a drive.

Actually, task performance takes much time. Let's think of the algorithm that w ill make this task easy to perform. If the files differ in
size, they are not duplicate. So, from this assumption, first w e can get names and sizes of all compared files, w hich w ill be sorted
by size, after that it w ill be possible to compare them by size.

Let's declare the structure for data storage w ith help of the type command. We w ill store only a file name instead of its w hole path
in order to save memory. The index of the parent directory in the directory array w ill be stored in the field ow ner instead of full
name.

type finf

{

 str name

 uint size

 uint owner

}

We need the follow ing global variables:

global

{

 arr dirs of finf

 arr files of finf

 arr sizes of uint

 str output

}

dirs - processed directory array.
files - files array.
sizes - array that contains files indices w ill be sorted.
output - string for result output.

The functions w ritten below are responsible for appending directories and files to the appropriate arrays.

func uint newdir(str name, uint owner)

func uint newfile(str name, uint size owner)

To find out more about these functions, read the source code. Functions append an element to the array and fill the element fields.

The scanfolder function is used to find all directories and files by the specified path. If the directory has been found, the element
w ill be appended to the dirs array; then this element is considered to be parent and the scanfolder function calls itself. If the file
has been found, the element w ill be appended to the files array. To make this task easier, w e don't take files w hich have size more
than 4GB, condition !cur.sizehiserves this purpose particularly.

func scanfolder(str wildcard, uint owner)

{

 ...

 if cur.attrib & $FILE_ATTRIBUTE_DIRECTORY

 {

 scanfolder(cur.fullname + "*.*", newdir(cur.name, owner))

 }

 ...

}

The scaninit function prepares the first call scanfolder using the starting path. Modifying these functions, you can use various
masks and specify size limits of the compared files for file searching.

func scaninit(str folder)

{

 str wildcard

 folder.fdelslash()

 @"Scanning \(folder)\n"

 scanfolder((wildcard = folder).faddname("*.*"), newdir(folder, 0))

Page 636

}

After file scanning w e w ill sort obtained data. So, instead of sorting the files array, w e offer you the better w ay for process
speed-up: to create a new array that contains indices of the files and sort it. Actually, w hile sorting elements get moved faster,
thus elements of small size w ill be a better choice.

func int sortsize(uint left right)

{

 return int(files[left->uint].size) - int(files[right->uint].size)

}

func sortfiles

{

 uint i

 @"Sorting...\n"

 sizes.expand(*files)

 fornum i, *sizes : sizes[i] = i

 sizes.sort(&sortsize)

}

The sortfiles function fills the sizes array w ith indices of the files. First, an index equals to the sequence number. Then, the sizes
array w ill be sorted w ith help of the sortsize function. Such parameters as left and right are pointers to data. If elements of the
array w ere structures, they w ould be used as objects; how ever, the element of the sizes array is uint, so w e use the ->uint
operation. This expression: files[index].size returns the size of a specified file. The function returns a positive number if the
size of the left file is greater than the size of the right one, or a negative number if the size of the left file is less than the size of the
right one, or zero if the sizes of both files are equal.

The getdir and getfile functions retrieve the full path of a file using the value of the ow ner field. getdir passes recursively
through the first parent directory and makes up the full path as it comes back.

func str getdir(uint id, str ret)

func str getfile(uint id, str ret)

Let's jump to discussion of the main comparison function. In the loop w e look through all sorted files, w here the file of the least size
is the first one.

func compare

{

 ...

 fornum i, *sizes - 1

 {

 id = sizes[i]

 if !*files[id].name : continue

The files that are considered to be duplicate are ignored in this example. Names of duplicate files w ill be nulled.

found = 0

 next = sizes[j = i + 1]

 while files[id].size == files[next].size

 {

In the given loop the current file is compared w ith the files of the same size that come next. Furthermore, w e miss the obtained
duplicate files. Comparison is made using the isequalfiles function from the standard library. In case of duplicate files, w e output
a message to the string output.
if *files[next].name &&

 isequalfiles(getfile(id, idname), getfile(next, nextname))

 {

 if !found

 {

 output @ "\lSize: \(files[id].size) ========\l\(idname)\l"

 }

 count++

 (output @ nextname) @"\l"

 found = 1

Page 637

 files[next].name.clear()

 }

 if ++j == *sizes : break

 next = sizes[j]

 }

This fragment outputs partial results. i & 0x3F defines the output of the result after each 64th file.

if i && !(i & 0x3F)

 {

 @ "\rApproved files: \(i) Found the same files: \(count)"

 }

 }

 ...

}

Using these functions

func init

func search

func main<main

is not a difficult task. There can be a great number of files and directories, so w e reserve a place for some elements in the init
function in advance. Moreover, w e append one empty parent element to the dirs array in order to start directory numbering at 1.
We consider that the ow ner field equals to zero either if the directory is root. In other w ords, the directory has no zero index.

Exercise 2
Write a program for searching duplicate files on all local hard drives.

Page 638

	About
	Overview
	History
	License

	Language Syntax Reference
	Basic language elements
	Identifiers
	Numbers
	Strings
	Binary data
	Macros
	Collections

	The program structure. Preprocessor
	Comment. Character substitution
	The define command
	The ifdef command
	Macro expressions
	The include command
	The import command
	The public and private commands

	Types and variables
	The type command
	Type inheritance
	System type methods
	The global command
	Local variables

	Functions methods operators
	Function declaration: func
	Method declaration: method
	Redefining operator operations
	Declaring text function
	Properties
	The extern command
	Subfunction declaration: subfunc
	Returning variables

	Statements
	if-elif-else statement
	switch statement
	while and do statements
	for and fornum statements
	foreach statement
	return, break, continue instructions
	label and goto instructions
	with statement

	Expressions and operators
	Arithmetic operators
	Logical operators
	Assignment operators
	Type reduction
	Fields and pointers
	Calling functions and methods
	The conditional operator ?
	Late binding operation
	Table of operator precedence

	Appendix
	Gentee Language in BNF

	How to launch Gentee
	Quick Launch
	Launch from Command Line
	Using '#!' command
	Compilation profiles

	Library Reference
	Array
	 * arr
	 foreach var,arr
	 arr of type
	 arr[i]
	arr.clear
	arr.cut
	arr.del
	arr.expand
	arr.insert
	arr.move
	arr.sort

	Array Of Strings
	 arrstr = type
	str = arrstr
	 arrstr += type
	arrstr.insert
	arrstr.load
	arrstr.read
	arrstr.replace
	arrstr.setmultistr
	arrstr.sort
	 arrstr.unite...
	arrstr.write
	arrstr

	Array Of Unicode Strings
	 arrustr = type
	ustr = arrustr
	 arrustr += type
	arrustr.insert
	arrustr.load
	arrustr.read
	arrustr.setmultiustr
	arrustr.sort
	 arrustr.unite...
	arrustr.write
	arrustr

	Buffer
	 * buf
	 buf[i]
	buf = buf
	buf + buf
	 buf += type
	buf == buf
	 buf(type)
	buf.align
	buf.append
	buf.clear
	buf.copy
	buf.crc
	buf.del
	buf.expand
	buf.free
	buf.findch
	buf.getmultistr
	buf.getmultiustr
	buf.insert
	buf.ptr
	buf.read
	buf.replace
	buf.reserve
	buf.write
	buf.writeappend

	Clipboard
	clipboard_gettext
	clipboard_empty
	clipboard_settext
	buf.getclip
	buf.setclip
	str.getclip
	str.setclip
	ustr.getclip
	ustr.setclip

	Collection
	 * collection
	 collection[i]
	collection = collection
	collection += collection
	collection + collection
	 foreach var,collection
	collection.append
	collection.clear
	collection.gettype
	collection.ptr
	 colitem

	COM/OLE
	 COM/OLE description
	 VARIANT
	 type = VARIANT
	 VARIANT = type
	 type(VARIANT)
	oleobj.createobj
	oleobj.getres
	oleobj.iserr
	oleobj.release
	variant.arrcreate
	variant.arrfromg
	variant.arrgetptr
	variant.clear
	variant.ismissing
	variant.isnull
	variant.setmissing

	Console
	congetch
	congetstr
	conread
	conrequest
	conyesno

	CSV
	 foreach var,csv
	csv.append
	csv.clear
	csv.read
	csv.settings
	csv.write

	Date & Time
	datetime = datetime
	datetime += uint
	datetime -= uint
	datetime - datetime
	datetime + datetime
	datetime == datetime
	 datetime < datetime
	 datetime > datetime
	abbrnameofday
	days
	daysinmonth
	firstdayofweek
	getdateformat
	getdatetime
	gettimeformat
	isleapyear
	nameofmonth
	datetime.dayofweek
	datetime.dayofyear
	datetime.fromstr
	datetime.gettime
	datetime.getsystime
	datetime.normalize
	datetime.setdate
	datetime.tostr
	filetime = filetime
	filetime == filetime
	 filetime < filetime
	 filetime > filetime
	datetimetoftime
	ftimetodatetime
	getfiledatetime
	datetime
	filetime

	Dbf
	 * dbf
	 foreach var,dbf
	dbf.append
	dbf.bof
	dbf.bottom
	dbf.close
	dbf.create
	dbf.del
	dbf.empty
	dbf.eof
	dbf.geterror
	dbf.go
	dbf.isdel
	dbf.open
	dbf.pack
	dbf.recno
	dbf.skip
	dbf.top
	dbf.f_count
	dbf.f_date
	dbf.f_decimal
	dbf.f_double
	dbf.f_find
	dbf.f_int
	dbf.f_logic
	dbf.f_memo
	dbf.f_name
	dbf.f_offset
	dbf.f_ptr
	dbf.f_str
	dbf.f_type
	dbf.f_width
	dbf.fw_date
	dbf.fw_double
	dbf.fw_int
	dbf.fw_logic
	dbf.fw_memo
	dbf.fw_str

	Files
	file.close
	file.getsize
	file.gettime
	file.open
	file.read
	file.setpos
	file.settime
	file.write
	copyfile
	copyfiles
	createdir
	deletedir
	deletefile
	delfiles
	direxist
	fileexist
	getcurdir
	getdrives
	getdrivetype
	getfileattrib
	getmodulename
	getmodulepath
	gettempdir
	isequalfiles
	movefile
	setattribnormal
	setcurdir
	setfileattrib
	verifypath
	finfo
	ffind
	 foreach var,ffind
	ffind.init
	getfileinfo

	FTP
	ftp.close
	ftp.command
	ftp.createdir
	ftp.deldir
	ftp.delfile
	ftp.getcurdir
	ftp.getfile
	ftp.getsize
	ftp.gettime
	ftp.lastresponse
	ftp.list
	ftp.open
	ftp.putfile
	ftp.rename
	ftp.setattrib
	ftp.setcurdir

	Gentee API
	gentee_call
	gentee_compile
	gentee_deinit
	gentee_getid
	gentee_init
	gentee_load
	gentee_ptr
	gentee_set
	gentee
	compileinfo
	optimize

	Hash
	 hash of type
	 * hash
	 hash[name]
	 foreach var,hash
	hash.clear
	hash.create
	hash.del
	hash.find
	hash.ignorecase
	hash.sethashsize
	hash

	HTTP
	http_get
	http_getfile
	http_head
	http_post

	INI File
	ini.delkey
	ini.delsection
	ini.getnum
	ini.getvalue
	ini.keys
	ini.read
	ini.sections
	ini.setnum
	ini.setvalue
	ini.write
	inigetval
	inisetval

	Keyboard
	sendstr
	sendvkey

	Math
	abs
	acos
	asin
	atan
	ceil
	cos
	exp
	fabs
	floor
	ln
	log
	modf
	pow
	sin
	sqrt
	tan

	Memory
	malloc
	mcmp
	mcopy
	mfree
	mlen
	mmove
	mzero

	ODBC (SQL)
	 ODBC description
	odbc.connect
	odbc.disconnect
	odbc.geterror
	odbc.newquery
	odbcquery.active
	odbcquery.close
	odbcquery.fieldbyname
	odbcquery.first
	odbcquery.geterror
	odbcquery.getrecordcount
	odbcquery.last
	odbcquery.moveby
	odbcquery.next
	odbcquery.prior
	odbcquery.run
	odbcquery.settimeout
	odbcfield.getbuf
	odbcfield.getdatetime
	odbcfield.getdouble
	odbcfield.getindex
	odbcfield.getint
	odbcfield.getlong
	odbcfield.getname
	odbcfield.getnumeric
	odbcfield.getstr
	odbcfield.gettype
	odbcfield.isnull

	Process
	argc
	argv
	exit
	getenv
	process
	setenv
	shell

	Registry
	regdelkey
	regdelvalue
	reggetmultistr
	reggetnum
	regkeys
	regsetmultistr
	regsetnum
	regvaltype
	regvalues
	regverify
	buf.regget
	buf.regset
	str.regget
	str.regset

	Socket
	inet_close
	inet_error
	inet_init
	inet_proxy
	inet_proxyenable
	inetnotify_func
	socket.close
	socket.connect
	socket.isproxy
	socket.recv
	socket.send
	socket.urlconnect
	str.iencoding
	str.ihead
	str.ihttpinfo
	str.iurl
	httpinfo
	inetnotify
	socket

	Stack
	stack.pop
	stack.popval
	stack.push
	stack.top
	stack

	String
	 * str
	str + str
	str = str
	 str += type
	str == str
	 str < str
	 str > str
	 str(type)
	 type(str)
	str.append
	str.appendch
	str.clear
	 str.copy...
	str.crc
	str.del
	str.dellast
	 str.eqlen...
	 str.fill...
	 str.find...
	 str.hex...
	str.insert
	str.islast
	str.lines
	str.lower
	str.out4
	str.print
	str.printf
	str.read
	str.repeat
	str.replace
	str.replacech
	str.setlen
	str.split
	str.substr
	 str.trim...
	str.upper
	str.write
	str.writeappend
	spattern
	spattern.init
	spattern.search
	str.search

	String - Filename
	str.faddname
	str.fappendslash
	str.fdelslash
	str.ffullname
	str.fgetdir
	str.fgetdrive
	str.fgetext
	str.fgetparts
	str.fnameext
	str.fsetext
	str.fsetname
	str.fsetparts
	str.fsplit
	str.fwildcard

	String - Unicode
	 * ustr
	 ustr[i]
	ustr + ustr
	 ustr = type
	 str = ustr
	 ustr += type
	str == ustr
	 ustr < ustr
	 ustr > ustr
	 ustr(str)
	 str(ustr)
	ustr.clear
	ustr.copy
	ustr.del
	ustr.findch
	ustr.fromutf8
	ustr.insert
	ustr.lines
	ustr.read
	ustr.replace
	ustr.reserve
	ustr.setlen
	ustr.split
	ustr.substr
	ustr.toutf8
	 ustr.trim...
	ustr.write

	System
	max
	min
	callback
	freecallback
	getid
	destroy
	new
	sizeof
	type_delete
	type_hasdelete
	type_hasinit
	type_init

	Thread
	thread.create
	thread.getexitcode
	thread.isactive
	thread.resume
	thread.suspend
	thread.terminate
	thread.wait
	exitthread
	sleep

	Tree
	 tree of type
	 * tree
	 * treeitem
	 foreach var,treeitem
	tree.clear
	tree.del
	tree.leaf
	tree.node
	tree.root
	treeitem.changenode
	treeitem.child
	treeitem.data
	treeitem.getnext
	treeitem.getprev
	treeitem.isleaf
	treeitem.isnode
	treeitem.isroot
	treeitem.lastchild
	treeitem.move
	treeitem.parent

	XML
	 XML description
	 foreach var,xmlitem
	xml.addentity
	xml.getroot
	xml.procfile
	xml.procstr
	xmlitem.chtag
	xmlitem.findtag
	xmlitem.getattrib
	xmlitem.getchild
	xmlitem.getchildtag
	xmlitem.getchildtext
	xmlitem.getname
	xmlitem.getnext
	xmlitem.getnexttag
	xmlitem.getnexttext
	xmlitem.getparent
	xmlitem.gettext
	xmlitem.isemptytag
	xmlitem.ispitag
	xmlitem.istag
	xmlitem.istext

	Samples
	hello
	square
	easymath
	primenumber
	fileattrib
	runini
	easyhtml
	calendar
	samefiles
	To be continued

